초록
번호판 인식 시스템의 인식 성능의 향상을 위해서는 문자 추출 및 문자인식을 하는 인식단계의 성능도 중요하지만 번호판 영역의 추출의 성능, 또한 중요하다. 본 논문에서는 기존 번호판 추출 과정의 오류를 분석하여, 유형별 분류를 하고, HoG (histogram of gradient) 특징 추출과 AdaBoost 기반 검증 절차를 적용하여 알고리즘 개선을 하였다. HoG 특징은 다양한 유형의 번호판 유형과 잡음에 강건한 특성을 갖게 되어, 이전에 검출하지 못하였던 번호판 영역을 검출하는데 효과적인 방법임을 보여준다.
For the improvement of license plate recognition system, correct extraction of a license plate region as well as character recognition is important. In this paper, with the analysis and classification of the error patterns in the process of plate region extraction, we tried to improve the extraction of the region using HoG(histogram of gradient) features and Adaboost. The results show that the HoG feature is robust to the noise and various types of the plates, and also is very effective to extract the region failed before.