DOI QR코드

DOI QR Code

Spatial Distribution of Precipitation Trends According to Geographical and Topographical Conditions

지리지형적 조건에 따른 강수량 추세 분포

  • Rim, Chang-Soo (Dept. of Civil and Environmental Engineering, Chungwoon University)
  • 임창수 (청운대학교 철도행정토목학과)
  • Published : 2009.05.31

Abstract

The spatial distribution of precipitation trends according to urbanization, geographical and topographical conditions have been studied. In this study, precipitation data from 1973 to 2006 were analyzed for 56 climatological stations including the Seoul metropolis in South Korea. In addition to annual average daily precipitation, monthly average daily precipitation in April, July, October and January were analyzed, considering seasonal effect. The geographical and topographical characteristics of these sites were examined using GIS analysis. Land use status of the study area was also examined to estimate the extent of urbanization. The study results indicate that annual average precipitation increased, and monthly average precipitation in April and October decreased, while those in January and July increased. Considering urbanization effect, annual average precipitation and monthly average precipitation in July increased; however, monthly average precipitation in January, April and October decreased. Furthermore, compared with urbanization rate and proximity to coast, average elevation of study area appeared to be the most close correlation with annual and monthly averages of precipitation trends.

본 연구에서는 도시화나 지리지형적 특성에 따른 강수량의 분포와 추세를 분석하였다. 이를 위하여 서울을 포함하여 전국 56개 기후관측지점에서 1973년부터 2006년까지의 강수량 자료를 수집하여 분석을 실시하였다. 분석을 위하여 계절적 영향을 고려하여 1월, 4월, 7월 그리고 10월의 월평균 일별과 연평균 일별 강수량 추세를 분석하였다. 그리고 이들 연구지역에 대해서 GIS 분석을 이용하여 지리지형적 특성을 파악하였고, 도시화 정도를 파악하기 위하여 토지피복자료를 분석하였다. 연구결과 연평균 일별 강수량 추세는 대부분의 연구지역에서 증가하고 있으며, 4월과 10월의 강수량은 감소추세에 있고, 1월과 7월의 경우 증가추세에 있는 것으로 나타났다. 도시화 영향을 고려할 때, 강수량 변화는 연별이나 7월의 경우 증가추세를 보이나 1, 4, 10월 강수량의 경우 감소추세를 보였다. 또한 도시화율이나 해안 근접성과 비교하여 연구지역의 평균고도는 연평균 및 월평균 강수량 추세에 가장 중요한 영향을 미치고 있음을 알 수 있었다.

Keywords

References

  1. 김광섭, 임태경 (2005). '한반도 강수량과 유량의 장기추세분석.' 한국수자원학회 학술 발표회 논문집, 한국수자원학회, pp. 916-919
  2. 이정택, 윤성호, 박무언 (1995). '우리나라 계절별 일조시간과 기온의 상관관계 및 분포에 관한 연구.' 한국환경농학회지, 제14권, 제2호, pp. 155-162
  3. 천재호, 이승호 (2007). '여름철 호남 서해안 지역의 강수에 미치는 바다의 영향.' 기후연구, 제2권, 제1호, pp. 14-23
  4. 홍기옥, 서명석, 나득균 (2006). '최근 30년간(1976-2005) 우리나라 강수의 시·공간변동과 지리환경.' Jour. Korean Earth Science Society, Vol. 27, No.4, pp. 433-449
  5. Baik, J.J. Kim, Y.H., and Vhun, H.-Y. (2001). 'Dry and moist convection forced by an urban heat island.' J. of Applied Meteorol., Vol. 40, pp. 1642-1475 https://doi.org/10.1175/1520-0450(2001)040<1462:DAMCFB>2.0.CO;2
  6. Bornstein, R. and Lin, Q. (2000). 'Urban heat islands and summertime convective thunderstorms in Atlanta: three cases studies.' Atmospheric Environment, Vol. 34, pp. 507-516 https://doi.org/10.1016/S1352-2310(99)00374-X
  7. Burian, S.J. and Shepherd, J.M. (2005). 'Effects of urbanization on the diurnal rainfall patterns in Houston.' Hydrological Processes, Vol. 19, pp.1089-1103 https://doi.org/10.1002/hyp.5647
  8. Dixon, P.G. and Mote, T.L. (2003). 'Patterns and causes of Atlanta's urban heat island-initiated precipitation.' J. Appl. Meteorol., Vol. 42, pp. 1273-1284 https://doi.org/10.1175/1520-0450(2003)042<1273:PACOAU>2.0.CO;2
  9. Heever, V.D. and Cotton, W.R. (2007). 'Urban aerosol impacts on downwind convective storms.' J. Appl. Meteorol., Vol. 46, pp. 828-850 https://doi.org/10.1175/JAM2492.1
  10. Hidalgo, H.G. (2004). 'Climate precursors of multidecadal drought variability in the western United States.' Water Resources Research, Vol. 40, W12504 https://doi.org/10.1029/2004WR003350
  11. Huff, F.A. and Vogel, J.L. (1978). 'Urban, topographical and diurnal effects on rainfall in the St. Louis region.' J. Appl. Meteorol., Vol. 17, pp. 565-577 https://doi.org/10.1175/1520-0450(1978)017<0565:UTADEO>2.0.CO;2
  12. Inoue, T. and Kimura, F. (2004). 'Urban effects on low-level clouds around the Tokyo metropolitan area on clear summer days.' Geophysical Research Letters, Vol. 31, L05103 https://doi.org/10.1029/2003GL018908
  13. Khain, A., Rosenfeld, D., and Pokrovsky, A. (2005). 'Aerosol impact on the dynamics and microphysics of deep convective clouds.' Q. J. R. Meteorol. Soc., Vol. 131, pp. 2639-2663 https://doi.org/10.1256/qj.04.62
  14. Molders, N. and Olson, M.A. (2004). 'Impact of urban effects on precipitation in high latitudes.' Journal of Hydrometeorology, Vol. 5, pp. 409-429 https://doi.org/10.1175/1525-7541(2004)005<0409:IOUEOP>2.0.CO;2
  15. Moos, V. and Duhamel, A. (1996). Climate and urban development. World Meteorological Organization, Geneva, Switzerland, pp. 6-12
  16. Mosaedi, A., Sharifan, H., and Shahabi, M. (2007). 'Effects of topography on maximum daily precipitation in Golestan province (Iran).' Geophysical Research Abstracts, Vol. 9, 02396
  17. Ochs, III, H.T. (1975). 'Modeling of cumulus initiation in METROMEX.' J. Appl. Meteorol., Vol. 14, pp. 873-882 https://doi.org/10.1175/1520-0450(1975)014<0873:MOCIIM>2.0.CO;2
  18. Orville, H.D., Eckhoff, P.A., Peak, J.E., Hirsch, J.H., and Kopp, F.J. (1981). 'Numerical simulation of the effects of cooling tower complexes on clouds and severe storms.' Atmos. Environ., Vol. 15, pp. 823-835 https://doi.org/10.1016/0004-6981(81)90287-0
  19. Sen, P.K. (1968). 'Estimates of the regression coefficient based on Kendall's tau.' Journal of the American Statistical Association, Vol. 63, pp. 1379-1389 https://doi.org/10.2307/2285891
  20. Shepherd, J.M. and Burian, S.J. (2003). 'Detection of urban-induced rainfall anomalies in a major coastal city.' Earth Interactions, Vol. 7, pp. 1-17 https://doi.org/10.1175/1087-3562(2003)007<0001:DOUIRA>2.0.CO;2
  21. Shepherd, J.M. (2005). 'A review of current investigations of urban-induced rainfall and recommendations for the future.' Earth Interactions, Vol. 9, No. 12, pp. 1-27 https://doi.org/10.1175/EI156.1
  22. Stulov, E.A. (1993). 'Urban effects on summer precipitation in Moscow.' Russian Meteorology and Hydrology.' Vol. 11, pp. 34-41
  23. Vukovich, F.M. and Dunn, J.W. (1978). 'A theoretical study of the St. Louis heat island: some parameter variations.' J. Appl. Meteorol., Vol. 17, pp. 1585-1594 https://doi.org/10.1175/1520-0450(1978)017<1585:ATSOTS>2.0.CO;2
  24. Watanabe, H. and Ogura, Y. (1987). 'Effects of orographically forced upstream lifting on mesoscale heavy precipitation: A case study.' J. of the Atmospheric Sciences, Vol. 44, No. 4, pp. 661-675 https://doi.org/10.1175/1520-0469(1987)044<0661:EOOFUL>2.0.CO;2
  25. Weisse, A.K. and Bois, P. (2001). 'Topographic effects on statistical characteristics of heavy rainfall and mapping in the french Alps.' J. Appl. Meteorol., Vol. 40, pp. 720-740 https://doi.org/10.1175/1520-0450(2001)040<0720:TEOSCO>2.0.CO;2

Cited by

  1. A Study on the Vegetation Structure of Abies koreana Forest in Yeongsil Area of Hallasan Mountain vol.25, pp.1, 2016, https://doi.org/10.5322/JESI.2016.25.1.57