References
-
Y. Aoyama, Complete local (S
$_{n−1}$ ) rings of type n$\geq$ 3 are Cohen-Macaulay, Proc. Japan Acad. Ser. A Math. Sci. 70 (1994), no. 3, 80–83 - H. Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8–28 https://doi.org/10.1007/BF01112819
- D. Costa, C. Huneke, and M. Miller, Complete local domains of type two are Cohen-Macaulay, Bull. London Math. Soc. 17 (1985), no. 1, 29–31 https://doi.org/10.1112/blms/17.1.29
-
H.-B. Foxby, On the
$\mu^i$ in a minimal injective resolution. II, Math. Scand. 41 (1977), no. 1, 19–44 - T. Kawasaki, Local rings of relatively small type are Cohen-Macaulay, Proc. Amer. Math. Soc. 122 (1994), no. 3, 703–709
-
J. Koh, M. Kim, and K. Lee, Applications of
$SC_r$ -condition to Bass numbers of modules, in preparation - K. Lee, A note on types of Noetherian local rings, Bull. Korean Math. Soc. 39 (2002), no. 4, 645–652 https://doi.org/10.4134/BKMS.2002.39.4.645
- K. Lee, On types of Noetherian local rings and modules, J. Korean Math. Soc. 44 (2007), no. 4, 987–995 https://doi.org/10.4134/JKMS.2007.44.4.987
- T. Marley, Unmixed local rings of type two are Cohen-Macaulay, Bull. London Math. Soc. 23 (1991), no. 1, 43–45 https://doi.org/10.1112/blms/23.1.43
- P. Roberts, Homological Invariants of Modules over Commutative Rings, Presses de l'Universite de Montreal, Montreal, Que., 1980
- P. Roberts, Intersection theorems, Commutative algebra (Berkeley, CA, 1987), 417–436, Math. Sci. Res. Inst. Publ., 15, Springer, New York, 1989
- P. Roberts, Rings of type 1 are Gorenstein, Bull. London Math. Soc. 15 (1983), no. 1, 48–50 https://doi.org/10.1112/blms/15.1.48
- W. V. Vasconcelos, Divisor Theory in Module Categories, North-Holland Mathematics Studies, No. 14. Notas de Matematica No. 53. [Notes on Mathematics, No. 53] North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1974
Cited by
- SOME REMARKS ON TYPES OF NOETHERIAN LOCAL RINGS vol.27, pp.4, 2014, https://doi.org/10.14403/jcms.2014.27.4.625