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QUADRATIC FUNCTIONAL EQUATIONS ASSOCIATED
WITH BOREL FUNCTIONS AND MODULE ACTIONS

WON-GIL PARK AND JAE-HYEONG BAE

ABSTRACT. For a Borel function ¥ : R x R — R satisfying the functional
equation ¥ (s + t,u +v) + (s — t,u —v) = 2¢(s,u) + 2¢(t,v), we show
that it satisfies the functional equation
P(s,t) = s(s = 1)1p(1,0) + stp(1,1) + £(t — $)1(0,1).
Using this, we prove the stability of the functional equation
flaz + ay, bz + bw) + f(ax — ay, bz — bw) = 2abf(x, z) + 2abf(y, w)

in Banach modules over a unital C*-algebra.

1. Introduction

Let X and Y be real or complex vector spaces. For a mapping g : X — Y,
consider the quadratic functional equation:

(1) 9z +y) +g(x—y) = 29(x) + 29(y).
In 1989, J. Aczél [1] obtained the solution of the equation (1) for the case that
Y acts on X. The result also holds when X and Y be arbitrary real or complex
vector spaces.

For a mapping f : X x X — Y, consider the 2-dimensional quadratic func-
tional equation:

The quadratic form f : R xR — R given by f(z,y) := ax?®+bxy +cy? is a solu-
tion of the equation (2). In 2007, The authors [2] acquired the general solution

and proved the stability of the 2-dimensional quadratic functional equation (2)
for the case that X and Y be real vector spaces as follows.

Theorem A. A mapping f : X x X — Y satisfies the equation (2) for all
z,y,z,w € X if and only if there exist two symmetric bi-additive mappings
S, T:X xX —Y and a bi-additive mapping B : X x X —'Y such that

f(z,y) = S(CE,:E) + B(.T,y) +T(y7y)
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forallxz,y € X.

Assume that ¢ : X* — [0,00) is a function satisfying the condition

<1

(3) Py, zw) =Y oqe(2, 279,272, 27w) < oo
j=0

for all z,y, z,w € X.
Theorem B. LetY be complete and f: X x X — Y a mapping such that

(@ 4y, 2+ w) + [z -y, 2 —w) = 2f(z,2) = 2f (y, w)[| < @(2,y, 2, w)

for all x,y,z,w € X. Then there exists a unique mapping F : X x X — Y
satisfying the equation (2) such that

for all z,y € X. The mapping F is given by F(z,y) :=lim; %f@jx, ij)
forallx,y € X.

Remark. The results of Theorem A and Theorem B are also holds for complex
vector spaces X and Y.

In this paper, we investigate the stability of the equation (2) with two actions
in Banach modules over a unital C*-algebra.

2. Results

Let A be a unital C*-algebra with a norm ||, and let s M and AN be
left Banach A-modules with norms ||-|| and |||, respectively. Put A; := {a €
Al |a| = 1}, A := {a € A] a is invertible in A}, A, = {a € A| a* = a},
U(A) == {a € A| aa* = a*a = 1}, AT := {a € As] Sp(a) C [0,00)} and
AT == AlNAT. Let ¢ : (aM)?* — [0,00) be a function satisfying the condition
(3) for all z,y,z,w € 4 M.

Definition. A 2-dimensional quadratic mapping F : s M x 4sM — 4N is
called A-quadratic if F(ax,ay) = a®F(x,y) for all a € A and all x,y € s M.

Theorem 1. Let f: aM X 4M — 4N be a mapping such that
(5) Hf(aa: + ay, az + aw) + f(ax — ay, az — aw) — 2a* f(x, z) — 2a2f(y,w)H
S @('r7 y’ Z’ w)

for all a € Ay and all z,y,z,w € sM. If f(tx,ty) is continuous in t € R
for each fized x,y € aM, then there exists a unique A-quadratic mapping
F: aAM X aM — 4N satisfying the inequality (4) for all z,y € aM.

Proof. By Theorem B, it follows from the inequality of the statement for a =1
that there exists a unique 2-dimensional quadratic mapping F' : oM X sM —
AN satisfying the inequality (4) for all z,y € 4 M.
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Let xg,y0 € 4M be fixed. And let L : 4N — R be any continuous linear
functional, that is, L is an arbitrary element of the dual space of s N. For
n € N, consider the functions ¢, : R — R defined by

U (t) := %L[f(Q"txo,Q”tyo)]

for all t € R. By the assumption that f(tz,ty) is continuous in ¢ € R for
each fixed z,y € 4 M, the function 1, is continuous for all n € N. Note that

Un(t) = 7= L[f(2"txo,2"tyo)] = L[7=f(2"two,2"tyo)] for all n € N and all

t € R. By [2], the sequence v, (t) is a Cauchy sequence for all ¢ € R. Define
a function ¥ : R — R by ¥(¢) := lim,_ ¥, (¢) for all t € R. Note that
Y(t) = L[F (txo, tyo)] for all t € R. Thus we get
(s +1t)+ (s —t) = L(F[(s + t)xo, (s + t)yo]) + L(F[(s — t)zo, (s — t)yo])
= L(F(s + t)ao, (s + t)yo] + Fl(s — t)ao, (s — t)yo])
= L[F(swo + txo, syo + tyo) + F(szg — txo, syo — tyo)]
= L[2F (szo, syo) + 2F (tzo, tyo))
= 2L[F (sxo, sy0)] + 2L[F (txo, tyo)] = 2¢(s) + 2¢(t)
for all s, € R. Since ¢ is the pointwise limit of continuous functions, it is

a Borel function. Thus the function v as a measurable quadratic function is
continuous (see [7]), so has the form ¢ (t) = t21(1) for all ¢ € R. Hence we have

L[F (tzo, tyo)] = ¢(t) = t*9(1) = t*L[F (0, y0)] = L[t*F(x0,0)]

for all t € R. Since L is any continuous linear functional, the 2-dimensional
quadratic mapping F : aM x aM — AN satisfies F(txo,tyo) = t2F(x0,%0)
for all t € R. Therefore we obtain

(6) F(tz,ty) = t*F(z,y)

forall t € R and all z,y € 4 M.
Let j be an arbitrary positive integer. Replacing x and z by 27z and 27z,
respectively, and letting y = w = 0 in the inequality (5), we gain

Hf(2jaa:,2jaz) —a’f(2x,272) — a2f(0,O)H < %@(ij,O,sz,O)

for all @ € Ay and all z,z € s M. Note that there is a constant K > 0 such
that the condition

(7) lav]| < Klal||v]]

for each a € A and each v € 4N (see [4], Definition 12). For all a € 4; and all
T,y € aM, we get

1 , . 0 p i i 1 ; ; Kla|?
EHf(ZJU,I,QJCLy) —a f(ijazjz)H < m@(QJI,(LijaO) + T”f(()?())”
— 0 as j — oo.
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Hence we have

1 . , 1 ) )
F(az,ay) = ]lirgo Ef(?axﬂ%zy) =a? lim Bf(QJx,ij) = a’F(z,y)

J—00

for all a € Ay and all 2,y € 4M. Since F(ax,ay) = a’F(x,y) for each a € Ay,
by the equation (6), we obtain

a a
F(azx,ay) = (|a| | |a|| | > = |a|2F<a|9c7 My) = azF(x,y)

for all nonzero a € A and all z,y € s4M. By the equation (6), we get
F(0z,0y) = 0?°F(x,y) for all 2,y € 4M. Therefore the 2-dimensional qua-
dratic mapping F : aM x 4M — 4N is the unique A-quadratic mapping
satisfying the inequality (4). O
Corollary 2. Let f: aM x aM — 4N be a mapping such that

||f ar + ay,az + aw) + f(ax — ay,az — aw) — 2a> f(x, z) — 2a* f(y, w || <

for all a € Ay and all z,y,z,w € sAM. If f(tx,ty) is continuous in t € R
for each fized x,y € aM, then there exists a unique A-quadratic mapping
F i aAM X aM — 4N satisfying || f(z,y) — F(z,9)| < g forall x,y € aM.

Corollary 3. Let E be a complex Banach space and f : ExX E — C a function
such that

| f(Az + Ay, Az + dw) + fF(Az — Ay, Az — Aw) — 20 f(2,2) — 2A° f(y, w)|| < 6
forall X € T :={X € C: |A\ =1} and dll z,y,z,w € E. If f(tm,ty) is

continuous int € R for each fized x,y € E, then there exists a unique quadratic
mapping F : E x E — C satisfying F(Ax) = X2z and ||f(z,y) — F(x,y)| < %
for all A\ € C and all z,y € E.

Lemma 4. Let ¢ : R xR — R be a function satisfying
P(s+t,u+v)+ (s —t,u—v)=29(s,u) + 2¢(t,v)
for all s, t,u,v € R. If the function 1 is a Borel function, then it satisfies
P(s,t) = s(s —t)(1,0) + stip(1,1) + t(t — s)(0,1)
for all s,t € R.
Proof. By Theorem A, there exist two symmetric bi-additive mappings S, T :
R xR — R and a bi-additive mapping B : R x R — R such that ¢(s,t) =
S(s,s)+ B(s,t) +T(t,t) for all s,t € R. By the proof of Theorem A in [2], we
gain
(8)  (pu,qu) = S(pu, pu) + B(pu, qv) + T(qu, qv)
= p*S(u,u) + pgB(u,v) + ¢*T(v,v)
= p*P(u, 0) + paltp(u, v) = ¥(u,0) — (0, v)] + ¢*(0,v)
=p(p — Q¥(u, 0) + pgo(u, v) + q(q — p)¥(0,v)
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for all p,q € Q and all u,v € R. Letting p = v = 1 in the equality (8), we get
= 1/)(% 0) + (IW)(% 1) - 1/}(“, 0) - 1/)(07 1)] + q2¢(0, 1)

for all u € R and all ¢ € Q. Putting v = v = 1 in the equality (8) again, we
have

(10) Y(p,q) = p(p — )1(1,0) + pgp(1,1) + q(q — p)1(0,1)

for all p,q € Q.

Since the function v — ¥(u,v) is measurable and satisfies the equation (1),
by [7], it is continuous. By the same reasoning, u — 1 (u, v) is also continuous.
Let s,t € R be fixed. Since 1 is measurable, by Theorem 7.14.26 in [3], for every
m € N there is a closed set F,, C [s, s+ 1] such that pu([s, s+ 1]\ F,,) < £ and
Y|F, xr is continuous. Since p(F,,) — 1, one can choose u,, € F,, satisfying
U, — 8. Take a sequence {g,} in Q converging to t. By the equality (9), we
obtain that

(11)
w(umat) = ¢(Um7 nlggo qn) = nthgo w(umv qn)
= T (¢ (tm, 0) + Gn[t) (. 1) = P(um, 0) = (0, 1)] + ¢;9(0, 1))

= w(uma O) + t[w(uma 1) - Q/J(Um, 0) - 1/1(0, 1)] + tzdj(oa 1)

for all m € N. For each fixed m € N, take a sequence {p,} in Q converging to
Un,. By the equalities (10) and (11), we see that

Dt 1)
= 0 Jim, po,0) + [ Jimpn. 1) = ( lim pa.0) = 0(0.)] + 60,1
= Tim (py, 0) +¢[ lim w(pa,1) = lim $(p,0) = (0, 1)] + 2(0,1)
= Tim [(1~ 1)(pn, 0) + t(pn, D] + - 1)0(0,1)
= (1—1) lim p29(1,0) + t(t — 1)¥(0,1)
+ tnhjgo o — DU(1.0) 4 putb(L 1)+ (1 po)ué(0, 1)
= um(um - t)w(l, O) + umtw(l, 1) + t(t - um)w(O, 1).

Hence we obtain that
(o,8) = v fim, ) = Jim (1)
= lim_ [t (U, — £)9(1,0) + uptp(1, 1) + ¢(t — wm)1(0,1)]
= s(s —)1¥(1,0) + step(1,1) + t(t — s)¥(0,1). O

Definition. A unital C*-algebra A is said to have real rank 0 (see [5]) if the
invertible self-adjoint elements are dense in Ag,.
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. * o
For any element a € A, a = aj + ias, where a1 := % and ay := 4% are

’ ) 2 2i
self-adjoint elements, furthermore, a = af — a] +iad —ia, , where af,a],as

and a; are positive elements (see [4], Lemma 38.8).

Theorem 5. Let A be of real rank 0 and let f : AMX gM — 4N be a mapping
such that
(12)  ||f(az + ay, bz + bw) + f(ax — ay, bz — bw) — 2abf(x, 2) — 2ab(y, w)||

S <p($7 y7 Z’ w)
foralla,b e (AfﬂAm)U{z’} and all x,y, z,w € AM. For each fired x,y € 4 M,
let the sequence {%f(Zjax, 2jby)} converge uniformly on Ay x Ay. If f(ax, by)
is continuous in (a,b) € (A1 UR)? for each fized x,y € 4 M, then there exists a
unique 2-dimensional quadratic mapping F : oM x aM — AN satisfying the
inequality (4) such that
Faw,ap) = 2 F(w,y)+ [ (Jaz | -l ) as-+ (g | —|a? ) i) [F(z,0)+ F0,)
foralla € A and all x,y € A M.
Proof. By Theorem B, there exists a unique 2-dimensional quadratic mapping
F i aAM x aM — 4N satisfying the equation (2) and the inequality (4) on
AM X AM.

Let xg,y0 € aM be fixed. And let L be an arbitrary element of the dual
space of 4N. For n € N, consider the functions ¥, : R x R — R defined by

Unls1) = 3 LU 50, 2"ty

for all s,t € R. By the assumption that f(ax,by) is continuous in (a,b) €
(A; UR)? for each fixed x,y € 4M, the function 1, is continuous for all

n € N. Note that 1, (s,t) = & L[f(2"sz0,2"ty)] = L[ f(2" sz, 2"tyo)] for

all n € N and all s,t € R. By [2], the sequence ¥, (s,t) is a Cauchy sequence
for all s,t € R. Define a function ¢ : R x R — R by ¢(s,t) := lim,, e ¥n(s,t)
for all s,t € R. Note that ¢(s,t) = L[F (sz,tyo)] for all ¢ € R. Thus we have

P(s1 + 82,11 +t2) +1b(s1 — 82,11 — t2)
= L(F[(51 + s2)z0, (t1 + tg)yo]) + L(F[(51 — 89)T0, (t1 — tg)yo])
= L(F[(s1 + s2)zo, (t1 + t2)yo] + F[(s1 — s2)z0, (t1 — t2)yo))
= L[F(s120 + s2o, t1yo + tayo) + F(s120 — 5220, t130 — t2yo)]
= L[2F (8120, t190) + 2F (s2x0, t2y0)]
=2L[F (5170, t190)] + 2L[F (5220, t2y0)] = 29 (s1,t1) + 2¢(s2, t2)

for all s1,s2,t1,t2 € R. Since 1 is the pointwise limit of continuous functions,
it is a Borel function. By Lemma 4, we gain

’l/}(S,t) = S(S - tﬁ/’(la 0) + Stw(lv 1) + t(t - 8)7/)(07 1)
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for all s,t € R. Hence we get
L[F(santyO)] :¢(3at) = 8(3 - t)w(LO) + SW(L 1) + t(t - 8)1/1(0, 1)
=s(s — t)L[F(20,0)] + stL[F(zo,y0)] + t(t — s)L[F(0, y0)]
= L[s(s — t)F(z0,0) 4 stF(zo,yo) + t(t — s)F(0,y0)]

for all s,t € R. Since L is any continuous linear functional, the 2-dimensional
quadratic mapping F : 4M x 4 M — 4N satisfies

F(sxo,tyo) = s(s — t)F(w0,0) + stF(zo,y0) + t(t — s)F(0,y0)
for all s,t € R. Therefore we obtain
(13)  Fsaty) = s(s — )F(2,0) + stF(w,y) + t{t — $)P(0,)

for all s, € R and all z,y € 4 M.
Let j be an arbitrary positive integer. Replacing # and z by 27z and 27z,
respectively, and letting y = w = 0 in the inequality (12), we get

Hf(?jaxﬂjbz) —abf(2jm,2jz) —abf(07O)H < %@(2jx,0,2jz,0)

for all a,b € (A} N A;,) U{i} and all , 2z € 4M. By the condition (7), for all
a,b € (A N Aip) U {i} and all 2,y € 4 M, we have
EHf(Qjax, 27by) —abf (27z,272)|| < ﬁcp(QJ:r,O, 27y, 0)+T\|f(0, o)l
— 0 as j— o0.

Hence we obtain that

1 ; . 1 , .
(14) F(az,by) = lim Ef(Qjax, 27by) = ab lim Ef(ij, 2y) = abF(z,y)
j—o0 Jj—o0
for all a,b € (A N A;,) U{i} and all z,y € 4 M.

Let ¢,d € Af \ Ain. Since A;, N Ay, is dense in Ag,, there exist two
sequences {c;} and {d;} in A;, N A, such that ¢; — c and d; — d as j — oo.

Put p; := ﬁcj and g; := ﬁdj' Then p; — c and ¢; — d as j — oo. Set
a; = /p;*p; and b; := /q;*q;. Then a; — c and b; — d as j — oo and

a;,b; € A N A;,. Since {ﬁf(Zjax, 2jby)} is uniformly converges on A; X A;
and f(ax, by) is continuous in a,b € Ay, we see that F'(ax, by) is also continuous
in a,b € A; for each z,y € 4 M. In fact, we gain

1 ) )
li Flaz,by) = li lim — f(27azx,27b
(a.b) = {e.) (az, by) (a.0) > e.d) j—0 el (2'az, 2'by)

1 . .
= 1 1 ‘7 J
Jll{rolo (a,b%lif%c,d) 49 f(2 ar; 2 by)

| , 4
= lim Ef(?cx,?dy) = F(cz,dy)

j—o0
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for all z,y € 4M. Thus we get
(15) jll{go F(ajxz,bjy) = F(JILIEO ajx,jllrilo bjy) = F(cz,dy)
for all z,y € 4M. By the equality (14), we have
1F(ajz, bjy) — cdF(z,y)|| = [la;b; F(z,y) — cdF(z,y)||
— ||ledF(z,y) — cdF(x,y)]| =0

as j — oo for all z,y € 4 M. By the equality (15) and the above convergence,
we see that

1F(ca, dy) — cdF (z,y)]|
<||F(cx, dy) — F(ajz,bjy)|| + | Fajz, bjy) — cdF(z,y)| =0 as j— o0
for all z,y € 4M. By the equality (14) and the above convergence, we obtain
(16) F(ax,by) = abF(z,y)

for all a,b € AT U {i} and all 2,y € A M.

By Theorem A, there exist two symmetric bi-additive mappings S, T : X x
X — Y and a bi-additive mapping B : X x X — Y such that f(z,y) =
S(x,x) + B(z,y) + T(y,y) for all x,y € X. Thus we see that

F(ax,ay) = S(az,ax) + B(ax,ay) + T (ay, ay)
= S(afx —ajr +iagz —iay v,af T —ayx +iaf x — ia;x)
+ B(af‘x —ayz +iayx —iay w,afy —ayy +iady — iaz_y)
+T(afy — ayy +iady —iayy, afy —ayy + iagy —iay y)
=S(afz,afz) — S(afz,ay z) + S(af z,iaf x) — S(af z,ia; z)
— S(ay =, afx) + S(ay @, a7 x) — S(ay =, ia;'x) + S(ay z,ia; @)

+ S(iad x,af ) — S(iaj x, a7 ) + S(ia3 z,ia3 x) — S(iaj z,ia; x)

2T, 01
+ B(ajz, afy) — B( fm,al_y) + B(afz, ia;y) - B(ai"x,ia;y)
Lx,afy) + Blay z,ayy) — B(ay z,ia3y) + B(ay z,ia5 y)

— Bliay x,afy) + B(iay x, a7 y) — B(iay z,ia3y) + B(ia; z,ia3 y)
y) = T(aiy,a7y) + T(afy, iasy) — T (afy,iaz y)

y) +T(ayy,a7y) — T (a7 y,ia3y) + T (a7 y,iaz y)

) = T(iazy, ayy) + T (iady, iady) — T(iady, iay y)
) + T(iay y, ayy) — T (iay y,iazy) + T (iay y,ia; y)
+ B(afx, afy) + T(afy, afy)]
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S(afz,a7z) + B(afm,afy) + T(afy,al_y)]
56) + B(afz,ia3y) + T(ai'y, ia3y)]
z) 4+ B(aj z,iay y) + T (afy, iay y)]
+ B(oz1 z,a] y) + T(a1 Y, a] y)]
+ B(afx afy) + T(afy, afy)]

29)]
+ B(a1 T, 10, y) + T(a1 Y, 10q y)]
+ B(za?x a] y) + T(m2 Y, a] y)]
+ B(w;x a; y) + T(za2 Y, aq y)]
S(iag x, ia;x) + B(zajx 1ay y) + T(za2 Y, 1a ;y)]
+ B(za;x iay y) + T(Za2 Y, 1a Q_y)}
10y T ) B(za2 z,a] y) + T(wL2 Y, a] y)]
ia;x a; ) + B(za2 x,a] y) + T(za2 Y, 0] y)]
— |S(tay x m2 ) + B(za2 T,104 y) +T(Za2 Y, ia ;'y)}
a3 y)]
=F(afz,afy) - F(afm, ay y) + F(afz,iafy) — F(af z,ia5 y)
- F(afz,af‘y) + F(al_x, al_y) - F(al_m, ia;'y) + F( ay x,104 y)
+ F(iad x,ay) — F(ia3 z,a7y) + F(iaj x,ia3y) — F(ia3 z,ia3 y)
— F(iay z,ay) + F(iay x, a7 y) — F(iay z,ia3y) + F(iay z,iay y)
for all @ € A and all z,y € 4 M. By the equation (13) and the equality (16),
we have

q
Flpz.ay) =F(p| Lalal y)

= iyl 1) F( - 2.0) ol ol (L)

+lal(lgl — 1p) F of(]'y)
= (Ipl = lg) pF (x,0) + pgF (z,y) + (Iq| — |pl) ¢F (0, )
= pqF (z,y) + (Ip| — lgl) [pF(x,0) — ¢F(0,y)]

for all p,q € {af,af,a;,ag} and all 7,y € aM. Note that aa] = aja] =
ajay; = ayaj =0. Hence we obtain that

Flaz, ay)
= (aT)QF(m y) +iaf af F(z,y) + (|af | — |a|) [af F(x,0) —iad F(0,y)]
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—iai ag F(z,y) — (’aﬂ - ’a;’) laf F(x,0) —ia; F(0,y)] + (a] )ZF(x y)
—iay a3 F(z,y) — (|ay | = |ad |) [a1 F(z,0) —iad F(0,y)]
+iay ay F(x,y) + (|a1_| |a2_’) [al_F(J:,O) — zaQ_F(O,y)]
+iay af F(z,y)+ (|a3| = |a]|) [ia3 F(x,0) — af F(0,y)]
—iag ay F(z,y) — (|a3 | = |a1 |) [ia3 F(2,0) — a7 F(0,y)]
- (a;)gF(%y) iay af F(r,y) — (}(12‘ ’al D [za2 F(z,0) - afF(O,y)]
+iay ay F(z,y) + (|az | = |a7]) [ias F(z,0) — a7 F(0,y)] — (a;)QF(amy)
= [(a'l")2 + iafa;‘ — iai‘az_ + (al )2 tay a2 +iay ay

+idayal —iagay — (aé")2 —iday af +iaya; — (a;)ﬂ F(z,y)
+ [(lag | =lag]) a1 + (Jar | = |af]) iax ] [F(2, 0) + F(0,9)]
= (af —a; +iad —iay )QF(:c,y)
+ [(Jaz | = |a3]) a1 + (|ar | = |aT|) a2 ] [F(x,0) + F(0,y)]
= a®F(z,y) + [(|a2_| | |)a1 + (|a1 | — |a1 |) iag | [F(z,0) + F(0,y)]
for all a € A and all z,y € 4 M. O

Theorem 6. Let A be of real rank 0 and commutative. Let D := {a €
A|Sp(a) € C\ [0,00)}, E := {a€ A|Sp(a) C C\ (—00,0]} and let DU FE
be dense in Ay. Let f: aM X aM — AN be a mapping satisfying the in-
equality (5) for all a € exp(U(A))U{1} and all z,y, z,w € aM. For each fized
x,y € aAM, let the sequence {ﬁf(?ax,?ay)} converge uniformly on A;. If
f(ax,ay) is continuous in a € AyUR for each fized x,y € 4 M, then there exists
a unique A-quadratic mapping F : aoM X aM — 4N such that the inequality
(4) for all x,y € s M.

Proof. Since f satisfies the inequality (5) for @ = 1 and all z,y,z,w € 4 M,
by the same reasoning as in the proof of Theorem B, there exists a unique 2-
dimensional quadratic mapping F : 4M x 4M — 4N satisfying the inequality
(4) for all z,y € 4M. By a similar method to the proof of Theorem 1, the
quadratic mapping F satisfies F(az, ay) = a*F(z,y) for all a € exp(UU(A))U{1}
and all z,y € 4 M.

For every element a € D, there is a positive integer m greater than 2 such
that 1“% <1- % By [6], there are unitary elements uq, ..., u, € U(A)

such that 1 4+loga =uy + - - - 4+ uy,. Then we get
F(eaz,eay) = F(e! M08y, e T8 0y) = P (et tumy emittumy)
= F(eul. . .eumx7 eul .. eumy) = e2u1 .. .eQumF(x y)
— (eu1+-..+u7n)2F(x’y) _ (61+10ga)2F(x,y) —¢ a2F(x y)
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for all @ € D and all z,y € 4M \ {0}. Since 1* = 11* = (1*)*1* = (11*)* =
(1*)* =1, we have 11* = 1*1 = 1. So 1 is unitary. Thus e = e! € exp(UU(A)).
Hence we have e?F(az, ay) = F(eaz,eay) = ¢*a’*F(z,y) for all @ € D and all
z,y € AM\ {0}. Therefore we obtain F(az,ay) = a*>F(z,y) for all a € D and
all z,y € 4M. By the same process as the above argument, one can see that
F(ax,ay) = a®F(z,y) for all a € E and all z,y € 4 M.

By the same reasoning as in the proof of Theorem 1 with the assumption
that f(ax,ay) is continuous in a € R for each fixed =,y € 4 M, we obtain that
F satisfies the equation (6) for all ¢t € R and all z,y € 4M. Since DU E is
dense in A;, for a € A;y, there exists a sequence {d;} in (D U E) \ {0} such
that d; — a as j — co. By the assumption that f(az,ay) is continuous in
a € A1 UR for each fixed x,y € 4 M, we have

i1 1
<1m|d||d|dx 1m|d||d|Jy)

hmF(|d||d|dm|d||d Jy>

1
lim |d-|2F<d-x,d-y)
j=so N[ 1]

2
= Jim I (17 ) Flon) = Jim EFe.9) = @F (o)

for all a € A;, and all z,y € 4 M.

Since { -f (23 ax,2’ ay)} is uniformly converges on A; and f(az,ay) is con-

(17) F(az,ay)

tinuous in a € Ay, we see that F(azx,ay) is also continuous in a € A; for each
x,y € aM. Let b € A\ (A;,U{0}). Since A;,NAg, is dense in Ay, there exists

a sequence {b;} in A;, N A, such that b; — b as j — co. Put a; := ﬁbj.
J

Then a; — ﬁb as j — oo and a; € Ay \ A;,. By the continuity of F', we have

1
(18) lim F(ajz,a;y) = ( lim a;z, lim ajy) F<|b| T |by>
J—)

J—00 — 00

for all z,y € 4 M. By the equality (17), we obtain that

[P - (@b)F(y)H = las?F (@0 - <|Z1)|6>F(y)H

= () Fen = () o] =0

as j — oo. By the equality (18) and the above convergence, we see that

|7y o) - (@b)zF(x’y)’

<= (e pev) - W’“J’”H*HF(W’%”<2lb)2F(x’y)H”
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as j — oo for all z,y € 4 M. By the above convergence and the equation (6),
we have

1 1

1 2
Flbaby) = F (b bl ) = b2 (b} Flas) = #F(a)

for all z,y € 4M. By the equality (17) and the above equality, F(az,ay) =
a’F(x,y) for all a € A\ {0} and all x,y € 4 M. By the equation (6), we get
F(0x,0y) = 02F(x,y) for all z,y € AM. Therefore F(ax,ay) = a*F(z,y) for
all a € A and all z,y € 4 M. O
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