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ON SEPARATIVE REFINEMENT MONOIDS

HuANYIN CHEN

ABSTRACT. We obtain two new characterizations of separativity of re-
finement monoids, in terms of comparability-type conditions. As appli-
cations, we get several equivalent conditions of separativity for exchange
ideals.

A commutative monoid (M, +,0) has a refinement (or is a refinement mono-
id) if, for all a, b, c and d in M, the equation a+b = c+d implies the existence of

ai,bi,c1,d; € M such that a = a1 +dy,b=b14+c1,c=a1+b; and d = d; +bcl.
a

These equations are represented in the form of a refinement matrix: g (Zi f;;) .
Refinement monoids have been extensively studied in recent years (cf. [4] and
[7]). A commutative monoid M is separative if, for all a,b € M, 2a = a+b = 2b
implies a = b. Separativity is a weak form of cancellativity for commutative
monoids. Many authors have studied separative refinement monoids from var-
ious view-points (see [3-4] and [6-7]). In this article, we get two new charac-
terizations of separative refinement monoids. We prove that every separative
refinement monoid can be characterized by a certain sort of comparability. Also
we introduce the concept of refinement extensions of a refinement monoid. We
see that every separative refinement monoid can be characterized by such re-
finement extensions. Let I be an ideal of a ring R. We use F'P(I) to denote
the class of finitely generated projective right R-modules P with P = PI and
V(I) to denote the monoid of isomorphism classes of objects from FP(I). Fol-
lowing Ara et al. (see [3]), an exchange ideal I of a ring R is separative if
V(I) is a separative refinement monoid, that is, for any A, B,C € FP(I),
ADAZ AP B=B®B=— A= B. We say that R is a separative ring if R
is separative as an ideal of R.

Separativity plays a key role in the direct sum decomposition theory of ex-
change rings. It seems rather likely that non-separative exchange rings should
exist. We say that an exchange ring R satisfies the comparability axiom pro-
vided that, for any finitely generated projective right R-modules A and B,
either A <® B or B <% A. In [7, Theorem 3.9], Pardo showed that every

Received June 13, 2008; Revised January 9, 2009.
2000 Mathematics Subject Classification. 20M14, 16E50.
Key words and phrases. refinement monoid, separativity, exchange ideal.

(©2009 The Korean Mathematical Society
489



490 HUANYIN CHEN

exchange ring satisfying the comparability axiom is separative. But the con-
verse is not true. For instance, there exist unit-regular rings which do not
satisfy the comparability axiom (see [5, Example 8.7]). We will give a new
characterization of the separativity for exchange ideals of a ring, in terms of
comparability-type conditions. Using refinement extensions of a refinement
monoid, we observe that the separativity over exchange ideals possesses nice
weak cancellation properties for arbitrary right modules.

Throughout, all monoids are commutative, so we will write + for the monoid
operation and 0 for the identity elements of all monoids. Every monoid M will
be endowed with the preordering < defined by a < b in M if and only if there
exists some ¢ € M such that a + ¢ = b. A monoid M has an order-unit u
if w € M is an element such that every element of M is bounded above by a
positive multiple of u. A subclass I of a monoid M is an o-ideal provided that
(Vx,y € I <= x+y € I). All rings in this article are associative with identities
and all modules are right unitary modules. Let A and B be right R-modules.
The symbol A <% B means that A is isomorphic to a direct summand of B
and nA means that the direct sum of n copies of A. We always use N to denote
the set of all positive integers.

For refinement monoids M, we note that separativity can be reduced to the
statement (Va,b,c € M)(a+c=b+c with ¢ <a,b = a =b). In general, this
property is weaker than separativity. This follows very easily from [3, Lemma
2.1].

Theorem 1. Let M be a refinement monoid. Then the following are equivalent:

(1) M is separative.
(2) Va,be M)(a=2band3a=3b=a<borb<a).
(3) (Va,b,ce M)(c+a=c+bwithc<a,b=a<borb<a).

Proof. (1) = (2) is clear by [3, Lemma 2.1].

(2) = (3) Given ¢+ a = ¢+ b with ¢ < a,b in M, then there exist e, f € M
such that a = c+eand b= c—+ f; hence, 2a =a+ (c+e) = (b+c)+e=b+a.
Likewise, we have 2b = a + b. This implies that 2a = 2b. Furthermore, we get
3a=a+2b=(a+b)+b=3b. Soeither a <borbd<a.

(3) = (1) Suppose that ¢+ a = ¢+ b with ¢ < a,b. It will suffice to show

that @ = b. In view of [3, Lemma 2.7], we have a refinement matrix over
b ¢

M : g(zll g}), where ¢; < aq,b1. From a1 + ¢ = b1 + ¢1 with ¢ < aq, b1,
L e

we deduce that a; < by or by < ay. If ay < by, then by = ay + e. Thus

c=c1+b=c+a1+e=c+e Asc<a,b,wehavea=a+eand b=>0+e¢;

hence, a = a+e =a; +dy + e = by +d;y = b. The proof of the case b; < ay

is just symmetric from the case a; < b;. By the note above, we obtain the

result. O

Corollary 2. Let M be a refinement monoid. Then the following are equival-
ent:
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(1) M is separative.

(2) (Va,b € M)(¥n € N)(na =nb and (n+1)a = (n+1)b = a < b or
b<a).

(3) (Va,be M)2a=a+b=2b=a<borb<a).

Proof. (1) = (2) is obvious by [3, Lemma 2.1].

(2) = (3) Suppose that 2a = a +b = 2b in M. Then 2a = 2b and 3a =
a+ (a+b) =2a+b=3b. Furthermore, we get 4a = 3b+a = 2b+ (a +b) = 4b.
Similarly, we deduce that na =nband (n+1)a= (n+1)b (n >2). Soa <b
orb<a.

(3) = (1) Given ¢+ a = ¢+ b with ¢ < a,b in M, then we have e, f € M
such that « = ¢+e and b = c+ f. It is easy to check that a+a =a+ (c+e) =
(b+c¢)+e=0b+a. Similarly, b+ b =a+b. Hence a < b or b < a. By virtue
of Theorem 1, the result follows. O

We say that M is an ordered-separative monoid provided that (Va,b €
M)a+b = 2b = a < b). In [8, Theorem 4.1], Wehrung proved that if
M is separative, then M is order-separative. We note that ‘separativity’ used
in [8] differs from that in this paper. Wehrung’s ‘separativity’ satisfies an ad-
ditional condition: (Va,b,c € M)(a+c < b+ ¢ with ¢ x b= a < b). A natural
problem asked whether the converse is true. In general, order-separativity does
not imply general separativity. Let M be the monoid generated by three ele-
ments a,b and ¢ such that 2a = 0,a4+b =c,a+c = b and b+ ¢ = 2b. Then
M ={0,a,b,c,2b,3b,4b, ...} defined by the following addition:

+ ] 0 a b c
0

0 a b c
a a 0 ¢ b
b b ¢ 2b 2b
c c b 2b 2b

and a +mb=mb,c+mb= (m+1)b(m >2). As20=b+c = 2¢, M is not a
separative monoid. But one checks that M is an ordered-separative monoid. In
[4, Proposition 9.5], Brookfield proved that every refinement order-separative
monoid is separative. Now we generalize Brookfield’s result as follows.

Corollary 3. Let M be a refinement monoid. If (Va,b € M)(a+b =20 =
a<borb<a), then M is separative.

Proof. Tt is obvious from Corollary 2. O

The converse of Corollary 3 is not true. Let {0,00} be the monoid such
that oo + 0o = 0o, and let RT+ the subgroup of strictly positive real numbers.
Let M be the monoid obtained from {0,000} x RT* by adding a zero element.
Since {0,000} and RT™ are separative refinement subgroups, we prove that M
is a separative refinement monoid. Choose a = (0,1) and b = (c0,1). Then
a+b=2b, whilea £ band b £ a.
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Following Ara (cf. [1-2]), an ideal I of a ring R is an exchange ideal provided
that for every x € I there exist an idempotent e € I and elements r, s € I such
that e = ar = x + s — xs. Let I be an exchange ideal of a ring R, and let
e € R be an idempotent. By [1, Lemma 1.1], one easily checks that ele is an
exchange ring.

Lemma 4. Let I be an exchange ideal of a ring R. Then for all right R-
modules A, B,C, D such that A® B~ C®D and A € FP(I), there are right
R-modules A1 = AQ,Bl = BQ, Cl = CQ, D1 = D2 such that A = A1 D Dl,B =
Bl @Cl,C:AQ@Bg, (mdD:Dg@Cg.

Proof. Suppose that ¥ : A®@ B~ C @ D. Then A® B = ¢~ 1(C) @ ¢y~ 1(D).
As A € FP(I), there is a right R-module E such that A ® E = nR for some
n € N. Let e : nR — A be the projection onto A. Then A = e(nR), whence
Endgr(A) & eM,(R)e. As A = AI, we have e(nR) = e(nR)I C nl. Set e =
(a1,...,01) € My(R). Then e(1,0,...,0)T € nI; hence, a; € nl. Likewise, we
have ag, ..., a, € nl. It follows that e € M,,(I). Since [ is an exchange ideal of
R, M, (I) is also an exchange ideal of M,,(R), and then Endr(A) is an exchange
ring. Thus A has the finitely exchange property. So we can find By C ¢~1(C)
and By C ¢~ (D) such that A® B = A® B; ® Bs. So B = By ® By. As
B, C 1/}71(0) - Bl@(A@BQ)7 we get 1/171(0) = wil(C) ﬂ(Bl@A@BQ) =B
Y HOYN(A D By). Let Cp = (C)((A@ By). Then C =2+~ 1(C) = B, @ (1,
Likewise, we have a right R-module D; such that D = ¢~1(D) = By ® D;. In
addition, A@(Bl @Bg) = A@B = w_l(C)@l/)_l(D) = (Bl @Cl)@ (BQ @Dl),
hence, A = C; @ D;. Therefore we complete the proof. O

Theorem 5. Let I be an exchange ideal of a ring R. Then the following are
equivalent:

(1) I is separative.

(2) Forany A, Be FP(I), C®A=Co® B withC <® A B=—= A<%B
or B<® A.

(3) For any A,B € FP(I), 2A = 2B and 3A = 3B — A <% B or
B <% A.

(4) For any A,Be FP(I),2A~2 Ae&B~2B=— A<%® Bor B<% A

Proof. In view of Lemma 4, V' (I) is a refinement monoid. Applying Theorem 1
and Corollary 2 to V(I), we obtain the result. O

Corollary 6. Let I be an exchange ideal of a ring R, and let m,n > 2 with
gced(m,n) = 1. Then the following are equivalent:
(1) T is separative.
(2) For any A,B € FP(I), mA =2 mB and nA 2 nB = A <%® B or
B <% A,

Proof. (1) = (2) Since I is separative, V(I) is a separative monoid. According
to [4, Proposition 8.10], we get A & B, as desired.



ON SEPARATIVE REFINEMENT MONOIDS 493

(2) = (1) Given 2A =% A® B = 2B with A,B € FP(I), then mA 2 mB
and nA = nB by an easy induction. So either A <% B or B <% A. In view of
Theorem 5, I is separative. ([

So far, we have been investigating separativity only in a refinement monoid.
Let M be a refinement submonoid of a monoid N. We say that IV is a refinement
extension of M in case the following hold:

(1) M is an o-ideal of N.
(2) (Vb,c,d € N)(Va € M)(a+ b = ¢+ d = there exists a refinement
a b
matrix over N : 3(31 Zi) .
We write {0,1, 00} for the monoid such that 1+ 1 =14 co = oo + 00 = 0.
Since the equation 1 + 1 = oo + oo can not be refined, {0,1,00} is not a
refinement monoid. The monoid {0, co} is a refinement submonoid of {0, 1, c0}.
Obviously, the condition (1) is equivalent to the statement: (Va € M)(b < a
in N = b € M). Although the condition (2) is satisfied in this case, we
claim that {0,1, 00} is not a refinement extension of {0, c0}. This is clear from
1 <ocand1¢{0,00}. Let Z* be the monoid of non-negative integers, and let
A ={0,2,3,4,...} be the submonoid of Z* obtained by deleting the number
1. Let N = Ax{0,00} and M = 0x {0,00}. Then N is a refinement extension
of the refinement M, while N is not a refinement monoid. As (2,0) £ (3,0) in
N, we see that (2,0) + (4,0) = (3,0) + (3,0) has no a refinement matrix over
N. Now we observe that separativity can be partially extended to refinement
extensions of a refinement monoid.

Theorem 7. Let N be a refinement extension of a refinement monoid M.
Then the following are equivalent:

(1) M is separative.

(2) Va,be N)(Vee M)(c+a=c+bwithc<a,b=a=0»).

(3) (Va,be N)(Nee M)(2c+a=2c+b=c+a=c+b).

Proof. (1) = (2) Suppose that ¢ € M,a,b € N such that ¢+ a = ¢+ b with
¢ < a,b. Since N is a refinement extension of M, we have a refinement matrix

C a
over N : g(gi 31) From ¢; < ¢ < a = a1 +d; in N, there exists some

e € N such that ¢; + e = a1 + d;. As ¢y < c and ¢ € M, we deduce that
c1

€

. ’
c1 € M. Furthermore, we get a refinement matrix over N : 9 (Z} ef’ ) - Hence
1
1

g = ay +dj and af < a1,d] < d;. So we can write that dy = d} + dff for
c a
some df € N. Thus there is a refinement matrix over N : g(b (-ls-ld’ aldf/dll) . Let
1 1 1
co = alf,as = ay +dj,bs = by +d} and do = df. We get a refinement matrix
over N :

“ o)
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with ¢ < ao. In addition, we see that co < ¢; and by < by. As ¢ < b,
we apply the argument above to the refinement matrix (%) and get a new

C a
refinement matrix over N : g(g; Zg) with ¢3 < b3. Furthermore, we have

c3 < ¢ <as <asg. Thus c3 + a3 = c3 + b3 = c € M with ¢z < agz, bs. Clearly,
c3,a3,b3 € M. As M is a separative monoid, it follows that as = b3. Therefore
a = az+ d3 = bs + d3z = b, as desired.

(2) = (3) Suppose that ¢ € M and a,b € N such that 2c+a = 2¢+b. Then
¢+ (c+a)=c+ (c+b) with ¢ < ¢+ a,c+ b; hence, c+a =c+b.

(3) = (1) is trivial by [3, Lemma 2.1]. O

Let a and b be elements in a monoid. The notation a o b means that a < nb
for some n € N.

Corollary 8. Let N be a refinement extension of a refinement monoid M.
Then the following are equivalent:

(1) M is separative.

(2) Va,be N)(Vee M)(c+a=c+bwithcxa,b=a=0»>).

Proof. (1) = (2) Suppose that ¢+ a = ¢+ b and ¢ € M,c¢ «x a,b. Then
we may choose n € N such that ¢ < na,nb. So there exists d € N such that
c¢+d = a+(n—1)a. Since N is a refinement extension of M, we have a refinement

c d
matrix over N : n1)a (S gi) This infers that a1 +e; = a + (n — 2)a.
It follows by a1 < ¢ € M that a; € M. Similarly, we have a refinement
a; €j

matrix over N : (n a2)a (23 dz) . Furthermore, we have a refinement matrix
° o2

an—2 €n-—2

ca(Cn-1 dp— . = = = ... =
over N : a (ani1 en_i) Hence ¢ = ¢; + a3 c1 + (c2 + a2) c +

co+ -+ cCp_1+ap_1. Set ¢, = ap—1. Then ¢ = ¢ + ¢ + -+ + ¢, with
€1y Cp < a. Asc; < c € M, we see that ¢y € M. Similarly, we prove
that ¢; = ci1 + -+ cimy with ¢; < b (j = 1,...,m;). Analogously, we
have ¢;; € M such that ¢; = ¢;1 +--- + Cim; (1 = 2,...,n). As a result,
( > cij) +a=( > ¢ij) + b with all ¢;; € M, ¢;; < a,b. By

1<i<n,1<j<m, 1<i<n,1<j<m;
using Theorem 7 repeatedly, we get a = b, as required.
(2) = (1) is obvious by [3, Lemma 2.1]. O

Recall that a right R-module P is a R-progenerator in case there exist m,n €
N and modules P’ and R’ such that mR 2 P@® P’ and nP 2 R® R'. Let I
be a separative exchange ideal of a ring R, and let C' be a finitely generated
projective right R-module with C = CI. If A and B are any R-progenerators
such that C @ A 2 C & B, we claim that A = B. This is an immediate
consequence of Corollary 8.

Theorem 9. Let I be an exchange ideal of a ring R. Then the following are
equivalent:

(1) I is separative.
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(2) For any C € FP(I), C® A= C® B withC <® A,B = A=~ B for
any right R-modules A and B.

Proof. (1) = (2) Let Mg denote the class of all right R-modules, and let
W (R) be the monoid of isomorphism classes of objects from Mpg. Then V(I)
is a submonoid of W(R). Suppose that C & A = C @ B with C € FP(I) and

c A
A, B € Mg. According to Lemma 4, we have a refinement matrix g (gl gl)
1 1

over W(R). This means that W(R) is a refinement extension of the refinement
monoid V(I). It follows by Theorem 7 that A = B.

(2) = (1) For any A,B,C € FP(I), C® A~ C & B with C <% A,B =
A = B, and therefore the result follows from [3, Lemma 2.1]. O

Corollary 10. Let A be a finitely generated projective right module over a
separative exchange ring R. If A and B are any right R-modules such that
COA=2CO®B withC <% A, B, then A~ B.

Proof. 1t is obvious by Theorem 9. ]

Theorem 11. Let N be a refinement extension of a refinement monoid M. If
N contains an order-unit u, then the following are equivalent:

(1) M is separative.

(2) Va,b € N)(Ve € M)(c+a=c+b < u withc <ab= a<bor
b<a).

(3) Va,byce M)(c+a=c+b<wu withc<a,b=a<borb<a).

Proof. (1) = (2) is obvious by Theorem 7.

(2) = (3) is trivial.

(3) = (1) Given c+a = c+b with ¢ < a,bin M, then we can find some n € N
such that ¢ < nwu in N. Since N is a refinement extension of M, by induction,
the refinement property also holds for the sum nu. So there exist ¢1,...,¢, <wu
such that ¢ = ¢1+- - +¢,. Hence ¢c1+(co+- - -+cp+a) = c1+(ca+ - -+c,+b). Let
ay = cy+---+c,+aand by = ca+---+e¢,+b. Then c;+ay = ¢1+b; witheg € M
and c; §c a, b1. By the proof of Theorem 7, we have a refinement matrix over

1 1
P (Z% Zi) , where ¢} < a},b). Tt follows from ¢f +a} =, +b, =c1 < u
with ¢) < o}, b} that either af < b] or b] < a}. If o} < b}, then b] = o} +e.
As a result, we get ¢; = ¢} + V) =¢)] +da} +e=c; +e Since ¢; < ay,by, we
see that a; = a1 + e and by = by + e, whence a; = a1 +e =a}) +d; +e =
by + di = by. Similarly, we deduce that a; = by if b} < a). This means that
o+ (cs+--+en+a)=co+ (c3+---+cy,+b). By iteration of this process,
we get a = b. Therefore, M is separative, which concludes the proof. [l

Corollary 12. Let N be a refinement extension of a refinement monoid M.
If N contains an order-unit u, then the following are equivalent:

(1) M is separative.
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(2) (Va,b € N)(Ve € M)(c+a =c+b < u withc x a,b = a <b or
b<a).

Proof. (2) = (1) follows from Theorem 11.

(1) = (2) Suppose that c+a = ¢+ b < wand ¢ € M,¢c x a,b. Then
we may choose n € N such that ¢ < na,nb. Thus we have d € N such that
c+d=a+(n—1)a. Analogously to Corollary 8, there are refinement matrices
over N :

c d a; e Gp—2 €En—2
a C1 d1 a Co d2 a Cn—1 dn—l
(n—1a\ar e ) (n—2)a\ax e )’ "7 a\ap_1 en_1)’
Let ¢, = a,_1. Then ¢ = ¢; + ¢ + -+ - ¢, with ¢1,...,¢, < a. Similarly, we

prove that ¢1 = ci11 + -+ + ¢im, with ¢1; < a,b(j =1,...,m1). Analogously,
we have ¢;; € M such that ¢; =c¢;1 + -+ ¢im, and ¢;; < a,b(i=2,...,n,j =
1,...,m;). This implies that ( > cij) +a = ( > cij) + b

1<i<n,1<j<m; 1<i<n,1<j<m;
with all ¢;; € M,c;; < a,b. Using Theorem 7 repeatedly, we conclude that
a = b, as desired. O

Theorem 13. Let N be a refinement extension of a refinement monoid M. If
N contains an order-unit u, then the following are equivalent:

(1) M is separative.

(2) Va,be M)(2a=a+b=2b<u=a=h.

(3) (Va,be M)2a=a+b=20<u=a<borb<a).

Proof. (1) = (2) and (2) = (3) are trivial.
(3)= (1) Given c+a =c+b < u with ¢ < a,b and a,b,c € M, it follows
a

(&
by [3, Lemma 2.7] that there is a refinement matrix over M : ¢(f* %) with

c1 < ay,b;. So we can find z,y € M such that a1 = ¢; + 2 and by = ¢; + v,
and then 2¢; +x = ¢1 +a1 = ¢ = ¢1 + b1 = 2¢; + y. This implies that
2 +x) =(a+z)+(aa+y) =2c1+y) =a+b <a+c<u By
hypothesis, we get a; < by or by < a;. Asaresult,a=a; +d<by+d=0bor
b=10b; +d < a; +d = a, and therefore the proof is true by Theorem 11. [l

Corollary 14. Let I be an exchange ideal of a ring R. Then the following are
equivalent:
(1) I is separative.
(2) Forany A,B,C e FP(I), AoC~2B®C <% R withC <% A,B =
A<® BorB<?% A
(2) For any A,B € FP(I),2A~2 A®& B > 2B <* R— A <% B or
B <% A,

Proof. In view of Lemma 4, V(I) is a refinement monoid. Let F'P(R) denote
the class of finitely generated projective right R-modules, and let V(R) be
the monoid of isomorphism classes of objects from FP(R). Then V(I) is a
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submonoid of V(R). Furthermore, we prove that V(R) is a refinement extension
of the refinement monoid V(I) and V(R) contains an order-unit [R]. Therefore
we complete the proof by Theorem 11 and Theorem 13. 0

Recall that a ring R is regular provided that for every a € R there exists
x € R such that a = axza. We say that a € R is one-sided unit-regular if there
exists a right or left invertible v € R such that a = aua. We write r(a) and
{(a) for the right and left annihilators of @ € R. In [3, Proposition 6.2], Ara
et al. proved that a regular ring R is separative if and only if each a € R
satisfying Rr(a) = f(a)R = R(1—a)R is unit-regular. We generalize this result
as follows.

Corollary 15. Let I be an ideal of a reqular ring R. Then the following are
equivalent:

(1) I is separative.

(2) Each a € R satisfying RaR(R(1 —a)R C Rr(a)(¢(a)R(I is one-
stded unit-regular.

(3) Each a € R satisfying Rr(a) = ¢(a)R = R(1 — a)R C I is one-sided
unit-reqular.

Proof. (1)=(2) Suppose RaR((R(1 — a)R C Rr(a)(¢(a)R(I. Then R =
(r(a) ®r(1 —a)) ® B for a right R-module B, and so aR = ar(1 — a) + aB =
ar(1—a)®aB. Assume that a = aca forac € R. Then R = r(a)®r(1—a)®B =
(1—ac)R®r(1—a)®aB. Thisyields r(a)®B = (1—ac)R®aB with B = aB. Let
¢ :aB — (1—a)aB given by ¢(ar) = (1—a)ar for any r € B. It is easy to verify
that ¢ is a right R-module isomorphism, and so B 2 a(1 —a)B = a(1 — a)R.
As a(1 —a)R C RaR(R(1 —a)R C Rr(a), it follows by [5, Corollary 2.23]
that B <% mr(a) for some m € N. As a(l —a)R C RaR(\R(1 —a)R C
{(a)R = R(1 — ac)R. By [5, Corollary 2.23] again, B <% n(1 — ac)R for some
n € N. Since a(l —a) € I, we see that B € FP(I). Let Mg denote the class
of all right R-modules, and let W(R) be the monoid of isomorphism classes
of objects from Mp. Analogously to Theorem 9, we prove that W(R) is a
refinement extension of the refinement monoid V(I). By Corollary 8, we get
r(a) = (1 —ac)R = R/aR. This implies that a € R is unit-regular, as required.

(2) = (3) is obvious.

(3)=(1) Suppose A6 C=2B®C <P Rand C <% A, B for some A, B,C €
FP(I). Write R=A1 ®C1 @D =Ay®Cy® D, where Ay 2 A, C; 2 C =5
and As & B. Let a € R induce an endomorphism of Rg, which is zero on Ay,
an isomorphism from C; onto Cs, and the identity on D. Then (1 —a)R =
(I1—a)(A1®C1); hence,a € 14+1. Let ¢ : A1 ®C; — (1—a)(A1®C1) be aright
R-module given by ¢(z) = (1 —a)z for any x € A1 ®Cy. Since (1—a)(4;®C)
is a projective right R-module, (1 —a)R <% A; & C; <% 24; = 2r(a). By [5,
Corollary 2.23], (1 — a)R C Rr(a). This yields R(1 — a)R = Rr(a). Assume
that @ = aca for a ¢ € R. Then (1 —a)R S® A1 C; =2 Ay @ Cy <®
245 = 2(R/aR) = 2(1 — ac)R. Using [5, Corollary 2.23] again, (1 — a)R C
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R(1 — ac)R = ¢(a)R, and then R(1 — a)R = {(a)R. By assumption, a € R
is one-sided unit-regular. This shows that r(a) <® R/aR or R/aR <% r(a).
Thus we have either A <® B or B <% A. According to Corollary 14, we
complete the proof. O

As is well known, every one-sided unit-regular ring is separative. It follows
from Corollary 15 that a regular ring R is separative if and only if each a € R
satisfying RaR(1 — a)R C Rr(a)f(a)R is one-sided unit-regular.
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