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ON SEPARATIVE REFINEMENT MONOIDS

Huanyin Chen

Abstract. We obtain two new characterizations of separativity of re-
finement monoids, in terms of comparability-type conditions. As appli-
cations, we get several equivalent conditions of separativity for exchange
ideals.

A commutative monoid (M,+, 0) has a refinement (or is a refinement mono-
id) if, for all a, b, c and d in M , the equation a+b = c+d implies the existence of
a1, b1, c1, d1 ∈M such that a = a1 +d1, b = b1 + c1, c = a1 + b1 and d = d1 + c1.

These equations are represented in the form of a refinement matrix:
a b

c
d

(
a1
d1

b1
c1

)
.

Refinement monoids have been extensively studied in recent years (cf. [4] and
[7]). A commutative monoid M is separative if, for all a, b ∈M , 2a = a+b = 2b
implies a = b. Separativity is a weak form of cancellativity for commutative
monoids. Many authors have studied separative refinement monoids from var-
ious view-points (see [3-4] and [6-7]). In this article, we get two new charac-
terizations of separative refinement monoids. We prove that every separative
refinement monoid can be characterized by a certain sort of comparability. Also
we introduce the concept of refinement extensions of a refinement monoid. We
see that every separative refinement monoid can be characterized by such re-
finement extensions. Let I be an ideal of a ring R. We use FP (I) to denote
the class of finitely generated projective right R-modules P with P = PI and
V (I) to denote the monoid of isomorphism classes of objects from FP (I). Fol-
lowing Ara et al. (see [3]), an exchange ideal I of a ring R is separative if
V (I) is a separative refinement monoid, that is, for any A,B,C ∈ FP (I),
A⊕ A ∼= A⊕ B ∼= B ⊕ B =⇒ A ∼= B. We say that R is a separative ring if R
is separative as an ideal of R.

Separativity plays a key role in the direct sum decomposition theory of ex-
change rings. It seems rather likely that non-separative exchange rings should
exist. We say that an exchange ring R satisfies the comparability axiom pro-
vided that, for any finitely generated projective right R-modules A and B,
either A .⊕ B or B .⊕ A. In [7, Theorem 3.9], Pardo showed that every

Received June 13, 2008; Revised January 9, 2009.
2000 Mathematics Subject Classification. 20M14, 16E50.
Key words and phrases. refinement monoid, separativity, exchange ideal.

c©2009 The Korean Mathematical Society

489



490 HUANYIN CHEN

exchange ring satisfying the comparability axiom is separative. But the con-
verse is not true. For instance, there exist unit-regular rings which do not
satisfy the comparability axiom (see [5, Example 8.7]). We will give a new
characterization of the separativity for exchange ideals of a ring, in terms of
comparability-type conditions. Using refinement extensions of a refinement
monoid, we observe that the separativity over exchange ideals possesses nice
weak cancellation properties for arbitrary right modules.

Throughout, all monoids are commutative, so we will write + for the monoid
operation and 0 for the identity elements of all monoids. Every monoid M will
be endowed with the preordering ≤ defined by a ≤ b in M if and only if there
exists some c ∈ M such that a + c = b. A monoid M has an order-unit u
if u ∈ M is an element such that every element of M is bounded above by a
positive multiple of u. A subclass I of a monoid M is an o-ideal provided that
(∀x, y ∈ I ⇐⇒ x+y ∈ I). All rings in this article are associative with identities
and all modules are right unitary modules. Let A and B be right R-modules.
The symbol A .⊕ B means that A is isomorphic to a direct summand of B
and nA means that the direct sum of n copies of A. We always use N to denote
the set of all positive integers.

For refinement monoids M , we note that separativity can be reduced to the
statement (∀a, b, c ∈M)(a+ c = b+ c with c ≤ a, b =⇒ a = b). In general, this
property is weaker than separativity. This follows very easily from [3, Lemma
2.1].

Theorem 1. Let M be a refinement monoid. Then the following are equivalent:

(1) M is separative.
(2) (∀a, b ∈M)(a = 2b and 3a = 3b =⇒ a ≤ b or b ≤ a).
(3) (∀a, b, c ∈M)(c+ a = c+ b with c ≤ a, b =⇒ a ≤ b or b ≤ a).

Proof. (1) ⇒ (2) is clear by [3, Lemma 2.1].
(2) ⇒ (3) Given c+ a = c+ b with c ≤ a, b in M , then there exist e, f ∈M

such that a = c+ e and b = c+ f ; hence, 2a = a+ (c+ e) = (b+ c) + e = b+ a.
Likewise, we have 2b = a+ b. This implies that 2a = 2b. Furthermore, we get
3a = a+ 2b = (a+ b) + b = 3b. So either a ≤ b or b ≤ a.

(3) ⇒ (1) Suppose that c + a = c + b with c ≤ a, b. It will suffice to show
that a = b. In view of [3, Lemma 2.7], we have a refinement matrix over

M :
b c

a
c

(
d1
b1

a1
c1

)
, where c1 ≤ a1, b1. From a1 + c1 = b1 + c1 with c1 ≤ a1, b1,

we deduce that a1 ≤ b1 or b1 ≤ a1. If a1 ≤ b1, then b1 = a1 + e. Thus
c = c1 + b1 = c1 + a1 + e = c+ e. As c ≤ a, b, we have a = a+ e and b = b+ e;
hence, a = a + e = a1 + d1 + e = b1 + d1 = b. The proof of the case b1 ≤ a1

is just symmetric from the case a1 ≤ b1. By the note above, we obtain the
result. ¤

Corollary 2. Let M be a refinement monoid. Then the following are equival-
ent:
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(1) M is separative.
(2) (∀a, b ∈ M)(∀n ∈ N)(na = nb and (n + 1)a = (n + 1)b =⇒ a ≤ b or

b ≤ a).
(3) (∀a, b ∈M)(2a = a+ b = 2b =⇒ a ≤ b or b ≤ a).

Proof. (1) ⇒ (2) is obvious by [3, Lemma 2.1].
(2) ⇒ (3) Suppose that 2a = a + b = 2b in M . Then 2a = 2b and 3a =

a+(a+ b) = 2a+ b = 3b. Furthermore, we get 4a = 3b+ a = 2b+(a+ b) = 4b.
Similarly, we deduce that na = nb and (n + 1)a = (n + 1)b (n ≥ 2). So a ≤ b
or b ≤ a.

(3) ⇒ (1) Given c + a = c + b with c ≤ a, b in M , then we have e, f ∈ M
such that a = c+ e and b = c+ f . It is easy to check that a+a = a+(c+ e) =
(b + c) + e = b + a. Similarly, b + b = a + b. Hence a ≤ b or b ≤ a. By virtue
of Theorem 1, the result follows. ¤

We say that M is an ordered-separative monoid provided that (∀a, b ∈
M)(a + b = 2b =⇒ a ≤ b). In [8, Theorem 4.1], Wehrung proved that if
M is separative, then M is order-separative. We note that ‘separativity’ used
in [8] differs from that in this paper. Wehrung’s ‘separativity’ satisfies an ad-
ditional condition: (∀a, b, c ∈M)(a+ c ≤ b+ c with c ∝ b⇒ a ≤ b). A natural
problem asked whether the converse is true. In general, order-separativity does
not imply general separativity. Let M be the monoid generated by three ele-
ments a, b and c such that 2a = 0, a + b = c, a + c = b and b + c = 2b. Then
M = {0, a, b, c, 2b, 3b, 4b, . . .} defined by the following addition:

+ 0 a b c

0
a
b
c

0 a b c
a 0 c b
b c 2b 2b
c b 2b 2b

and a+mb = mb, c+mb = (m+ 1)b(m ≥ 2). As 2b = b+ c = 2c, M is not a
separative monoid. But one checks that M is an ordered-separative monoid. In
[4, Proposition 9.5], Brookfield proved that every refinement order-separative
monoid is separative. Now we generalize Brookfield’s result as follows.

Corollary 3. Let M be a refinement monoid. If (∀a, b ∈ M)(a + b = 2b =⇒
a ≤ b or b ≤ a), then M is separative.

Proof. It is obvious from Corollary 2. ¤

The converse of Corollary 3 is not true. Let {0,∞} be the monoid such
that ∞+∞ = ∞, and let R++ the subgroup of strictly positive real numbers.
Let M be the monoid obtained from {0,∞}× R++ by adding a zero element.
Since {0,∞} and R++ are separative refinement subgroups, we prove that M
is a separative refinement monoid. Choose a = (0, 1) and b = (∞, 1). Then
a+ b = 2b, while a � b and b � a.
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Following Ara (cf. [1-2]), an ideal I of a ring R is an exchange ideal provided
that for every x ∈ I there exist an idempotent e ∈ I and elements r, s ∈ I such
that e = xr = x + s − xs. Let I be an exchange ideal of a ring R, and let
e ∈ R be an idempotent. By [1, Lemma 1.1], one easily checks that eIe is an
exchange ring.

Lemma 4. Let I be an exchange ideal of a ring R. Then for all right R-
modules A,B,C,D such that A⊕ B ∼= C ⊕D and A ∈ FP (I), there are right
R-modules A1

∼= A2, B1
∼= B2, C1

∼= C2, D1
∼= D2 such that A = A1 ⊕D1, B =

B1 ⊕ C1, C = A2 ⊕B2, and D = D2 ⊕ C2.

Proof. Suppose that ψ : A ⊕ B ∼= C ⊕D. Then A ⊕ B = ψ−1(C) ⊕ ψ−1(D).
As A ∈ FP (I), there is a right R-module E such that A ⊕ E ∼= nR for some
n ∈ N. Let e : nR → A be the projection onto A. Then A ∼= e(nR), whence
EndR(A) ∼= eMn(R)e. As A = AI, we have e(nR) = e(nR)I ⊆ nI. Set e =
(α1, . . . , α1) ∈Mn(R). Then e(1, 0, . . . , 0)T ∈ nI; hence, α1 ∈ nI. Likewise, we
have α2, . . . , αn ∈ nI. It follows that e ∈Mn(I). Since I is an exchange ideal of
R, Mn(I) is also an exchange ideal of Mn(R), and then EndR(A) is an exchange
ring. Thus A has the finitely exchange property. So we can find B1 ⊆ ψ−1(C)
and B2 ⊆ ψ−1(D) such that A ⊕ B = A ⊕ B1 ⊕ B2. So B ∼= B1 ⊕ B2. As
B1 ⊆ ψ−1(C) ⊆ B1⊕(A⊕B2), we get ψ−1(C) = ψ−1(C)

⋂
(B1⊕A⊕B2) = B1⊕

ψ−1(C)
⋂

(A⊕B2). Let C1 = ψ(C)
⋂

(A⊕B2). Then C ∼= ψ−1(C) = B1 ⊕C1,
Likewise, we have a right R-module D1 such that D ∼= ψ−1(D) = B2 ⊕D1. In
addition, A⊕(B1⊕B2) = A⊕B = ψ−1(C)⊕ψ−1(D) = (B1⊕C1)⊕(B2⊕D1);
hence, A ∼= C1 ⊕D1. Therefore we complete the proof. ¤

Theorem 5. Let I be an exchange ideal of a ring R. Then the following are
equivalent:

(1) I is separative.
(2) For any A,B ∈ FP (I), C ⊕ A ∼= C ⊕B with C .⊕ A,B =⇒ A .⊕ B

or B .⊕ A.
(3) For any A,B ∈ FP (I), 2A = 2B and 3A = 3B =⇒ A .⊕ B or

B .⊕ A.
(4) For any A,B ∈ FP (I), 2A ∼= A⊕B ∼= 2B =⇒ A .⊕ B or B .⊕ A.

Proof. In view of Lemma 4, V (I) is a refinement monoid. Applying Theorem 1
and Corollary 2 to V (I), we obtain the result. ¤

Corollary 6. Let I be an exchange ideal of a ring R, and let m,n ≥ 2 with
gcd(m,n) = 1. Then the following are equivalent:

(1) I is separative.
(2) For any A,B ∈ FP (I), mA ∼= mB and nA ∼= nB =⇒ A .⊕ B or

B .⊕ A.

Proof. (1) ⇒ (2) Since I is separative, V (I) is a separative monoid. According
to [4, Proposition 8.10], we get A ∼= B, as desired.
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(2) ⇒ (1) Given 2A ∼= A ⊕ B ∼= 2B with A,B ∈ FP (I), then mA ∼= mB
and nA ∼= nB by an easy induction. So either A .⊕ B or B .⊕ A. In view of
Theorem 5, I is separative. ¤

So far, we have been investigating separativity only in a refinement monoid.
LetM be a refinement submonoid of a monoidN . We say thatN is a refinement
extension of M in case the following hold:

(1) M is an o-ideal of N .
(2) (∀b, c, d ∈ N)(∀a ∈ M)(a + b = c + d =⇒ there exists a refinement

matrix over N :
a b

c
d

(
a1
d1

b1
c1

)
.

We write {0, 1,∞} for the monoid such that 1 + 1 = 1 +∞ = ∞ +∞ = ∞.
Since the equation 1 + 1 = ∞ + ∞ can not be refined, {0, 1,∞} is not a
refinement monoid. The monoid {0,∞} is a refinement submonoid of {0, 1,∞}.
Obviously, the condition (1) is equivalent to the statement: (∀a ∈ M)(b ≤ a
in N =⇒ b ∈ M). Although the condition (2) is satisfied in this case, we
claim that {0, 1,∞} is not a refinement extension of {0,∞}. This is clear from
1 ≤ ∞ and 1 6∈ {0,∞}. Let Z+ be the monoid of non-negative integers, and let
A = {0, 2, 3, 4, . . .} be the submonoid of Z+ obtained by deleting the number
1. Let N = A×{0,∞} and M = 0×{0,∞}. Then N is a refinement extension
of the refinement M , while N is not a refinement monoid. As (2, 0) � (3, 0) in
N , we see that (2, 0) + (4, 0) = (3, 0) + (3, 0) has no a refinement matrix over
N . Now we observe that separativity can be partially extended to refinement
extensions of a refinement monoid.

Theorem 7. Let N be a refinement extension of a refinement monoid M .
Then the following are equivalent:

(1) M is separative.
(2) (∀a, b ∈ N)(∀c ∈M)(c+ a = c+ b with c ≤ a, b =⇒ a = b).
(3) (∀a, b ∈ N)(∀c ∈M)(2c+ a = 2c+ b =⇒ c+ a = c+ b).

Proof. (1) ⇒ (2) Suppose that c ∈ M,a, b ∈ N such that c + a = c + b with
c ≤ a, b. Since N is a refinement extension of M , we have a refinement matrix
over N :

c a
c
b

(
c1
b1

a1
d1

)
. From c1 ≤ c ≤ a = a1 + d1 in N , there exists some

e ∈ N such that c1 + e = a1 + d1. As c1 ≤ c and c ∈ M , we deduce that

c1 ∈ M . Furthermore, we get a refinement matrix over N :
c1 e

a1
d1

(
a′1
d′1

e′
f

)
. Hence

c1 = a′1 + d′1 and a′1 ≤ a1, d
′
1 ≤ d1. So we can write that d1 = d′1 + d′′1 for

some d′′1 ∈ N . Thus there is a refinement matrix over N :
c a

c
b

(
a′1

b1+d′1

a1+d′1
d′′1

)
. Let

c2 = a′1, a2 = a1 + d′1, b2 = b1 + d′1 and d2 = d′′1 . We get a refinement matrix
over N :

(∗)
( c a

c c2 a2

b b2 d2

)
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with c2 ≤ a2. In addition, we see that c2 ≤ c1 and b1 ≤ b2. As c ≤ b,
we apply the argument above to the refinement matrix (∗) and get a new

refinement matrix over N :
c a

c
b

(
c3
b3

a3
d3

)
with c3 ≤ b3. Furthermore, we have

c3 ≤ c2 ≤ a2 ≤ a3. Thus c3 + a3 = c3 + b3 = c ∈ M with c3 ≤ a3, b3. Clearly,
c3, a3, b3 ∈M . As M is a separative monoid, it follows that a3 = b3. Therefore
a = a3 + d3 = b3 + d3 = b, as desired.

(2) ⇒ (3) Suppose that c ∈M and a, b ∈ N such that 2c+ a = 2c+ b. Then
c+ (c+ a) = c+ (c+ b) with c ≤ c+ a, c+ b; hence, c+ a = c+ b.

(3) ⇒ (1) is trivial by [3, Lemma 2.1]. ¤
Let a and b be elements in a monoid. The notation a ∝ b means that a ≤ nb

for some n ∈ N.

Corollary 8. Let N be a refinement extension of a refinement monoid M .
Then the following are equivalent:

(1) M is separative.
(2) (∀a, b ∈ N)(∀c ∈M)(c+ a = c+ b with c ∝ a, b =⇒ a = b).

Proof. (1) ⇒ (2) Suppose that c + a = c + b and c ∈ M, c ∝ a, b. Then
we may choose n ∈ N such that c ≤ na, nb. So there exists d ∈ N such that
c+d = a+(n−1)a. SinceN is a refinement extension ofM , we have a refinement

matrix over N :
c d

a
(n−1)a

(
c1
a1

d1
e1

)
. This infers that a1 + e1 = a + (n − 2)a.

It follows by a1 ≤ c ∈ M that a1 ∈ M . Similarly, we have a refinement

matrix over N :
a1 e1

a
(n−2)a

(
c2
a2

d2
e2

)
. Furthermore, we have a refinement matrix

over N :
an−2 en−2

a
a

(
cn−1
an−1

dn−1
en−1

)
. Hence c = c1 + a1 = c1 + (c2 + a2) = · · · = c1 +

c2 + · · · + cn−1 + an−1. Set cn = an−1. Then c = c1 + c2 + · · · + cn with
c1, . . . , cn ≤ a. As c1 ≤ c ∈ M , we see that c1 ∈ M . Similarly, we prove
that c1 = c11 + · · · + c1m1 with c1j ≤ b (j = 1, . . . ,m1). Analogously, we
have cij ∈ M such that ci = ci1 + · · · + cimi(i = 2, . . . , n). As a result,
(

∑
1≤i≤n,1≤j≤mi

cij) + a = (
∑

1≤i≤n,1≤j≤mi

cij) + b with all cij ∈ M, cij ≤ a, b. By

using Theorem 7 repeatedly, we get a = b, as required.
(2) ⇒ (1) is obvious by [3, Lemma 2.1]. ¤
Recall that a right R-module P is a R-progenerator in case there existm,n ∈

N and modules P ′ and R′ such that mR ∼= P ⊕ P ′ and nP ∼= R ⊕ R′. Let I
be a separative exchange ideal of a ring R, and let C be a finitely generated
projective right R-module with C = CI. If A and B are any R-progenerators
such that C ⊕ A ∼= C ⊕ B, we claim that A ∼= B. This is an immediate
consequence of Corollary 8.

Theorem 9. Let I be an exchange ideal of a ring R. Then the following are
equivalent:

(1) I is separative.
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(2) For any C ∈ FP (I), C ⊕ A ∼= C ⊕ B with C .⊕ A,B =⇒ A ∼= B for
any right R-modules A and B.

Proof. (1) ⇒ (2) Let MR denote the class of all right R-modules, and let
W (R) be the monoid of isomorphism classes of objects from MR. Then V (I)
is a submonoid of W (R). Suppose that C ⊕ A ∼= C ⊕ B with C ∈ FP (I) and

A,B ∈ MR. According to Lemma 4, we have a refinement matrix
C A

C
B

(
C1
B1

A1
D1

)

over W (R). This means that W (R) is a refinement extension of the refinement
monoid V (I). It follows by Theorem 7 that A ∼= B.

(2) ⇒ (1) For any A,B,C ∈ FP (I), C ⊕ A ∼= C ⊕ B with C .⊕ A,B =⇒
A ∼= B, and therefore the result follows from [3, Lemma 2.1]. ¤

Corollary 10. Let A be a finitely generated projective right module over a
separative exchange ring R. If A and B are any right R-modules such that
C ⊕A ∼= C ⊕B with C .⊕ A,B, then A ∼= B.

Proof. It is obvious by Theorem 9. ¤

Theorem 11. Let N be a refinement extension of a refinement monoid M . If
N contains an order-unit u, then the following are equivalent:

(1) M is separative.
(2) (∀a, b ∈ N)(∀c ∈ M)(c + a = c + b ≤ u with c ≤ a, b =⇒ a ≤ b or

b ≤ a).
(3) (∀a, b, c ∈M)(c+ a = c+ b ≤ u with c ≤ a, b =⇒ a ≤ b or b ≤ a).

Proof. (1) ⇒ (2) is obvious by Theorem 7.
(2) ⇒ (3) is trivial.
(3) ⇒ (1) Given c+a = c+b with c ≤ a, b in M , then we can find some n ∈ N

such that c ≤ nu in N . Since N is a refinement extension of M , by induction,
the refinement property also holds for the sum nu. So there exist c1, . . . , cn ≤ u
such that c = c1+· · ·+cn. Hence c1+(c2+· · ·+cn+a) = c1+(c2+· · ·+cn+b). Let
a1 = c2+· · ·+cn+a and b1 = c2+· · ·+cn+b. Then c1+a1 = c1+b1 with c1 ∈M
and c1 ≤ a1, b1. By the proof of Theorem 7, we have a refinement matrix over

N :
c1 a1

c1
b1

(
c′1
b′1

a′1
d1

)
, where c′1 ≤ a′1, b

′
1. It follows from c′1 + a′1 = c′1 + b′1 = c1 ≤ u

with c′1 ≤ a′1, b
′
1 that either a′1 ≤ b′1 or b′1 ≤ a′1. If a′1 ≤ b′1, then b′1 = a′1 + e.

As a result, we get c1 = c′1 + b′1 = c′1 + a′1 + e = c1 + e. Since c1 ≤ a1, b1, we
see that a1 = a1 + e and b1 = b1 + e, whence a1 = a1 + e = a′1 + d1 + e =
b′1 + d1 = b1. Similarly, we deduce that a1 = b1 if b′1 ≤ a′1. This means that
c2 + (c3 + · · ·+ cn + a) = c2 + (c3 + · · ·+ cn + b). By iteration of this process,
we get a = b. Therefore, M is separative, which concludes the proof. ¤

Corollary 12. Let N be a refinement extension of a refinement monoid M .
If N contains an order-unit u, then the following are equivalent:

(1) M is separative.
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(2) (∀a, b ∈ N)(∀c ∈ M)(c + a = c + b ≤ u with c ∝ a, b =⇒ a ≤ b or
b ≤ a).

Proof. (2) ⇒ (1) follows from Theorem 11.
(1) ⇒ (2) Suppose that c + a = c + b ≤ u and c ∈ M, c ∝ a, b. Then

we may choose n ∈ N such that c ≤ na, nb. Thus we have d ∈ N such that
c+d = a+(n−1)a. Analogously to Corollary 8, there are refinement matrices
over N :

( c d

a c1 d1

(n− 1)a a1 e1

)
,

( a1 e1

a c2 d2

(n− 2)a a2 e2

)
, . . . ,

( an−2 en−2

a cn−1 dn−1

a an−1 en−1

)
.

Let cn = an−1. Then c = c1 + c2 + · · · cn with c1, . . . , cn ≤ a. Similarly, we
prove that c1 = c11 + · · · + c1m1 with c1j ≤ a, b(j = 1, . . . ,m1). Analogously,
we have cij ∈M such that ci = ci1 + · · ·+ cimi and cij ≤ a, b(i = 2, . . . , n, j =
1, . . . ,mi). This implies that (

∑
1≤i≤n,1≤j≤mi

cij) + a = (
∑

1≤i≤n,1≤j≤mi

cij) + b

with all cij ∈ M, cij ≤ a, b. Using Theorem 7 repeatedly, we conclude that
a = b, as desired. ¤

Theorem 13. Let N be a refinement extension of a refinement monoid M . If
N contains an order-unit u, then the following are equivalent:

(1) M is separative.
(2) (∀a, b ∈M)(2a = a+ b = 2b ≤ u =⇒ a = b.
(3) (∀a, b ∈M)(2a = a+ b = 2b ≤ u =⇒ a ≤ b or b ≤ a).

Proof. (1) ⇒ (2) and (2) ⇒ (3) are trivial.
(3) ⇒ (1) Given c + a = c + b ≤ u with c ≤ a, b and a, b, c ∈ M , it follows

by [3, Lemma 2.7] that there is a refinement matrix over M :
c a

c
b

(
c1
b1

a1
d

)
with

c1 ≤ a1, b1. So we can find x, y ∈ M such that a1 = c1 + x and b1 = c1 + y,
and then 2c1 + x = c1 + a1 = c = c1 + b1 = 2c1 + y. This implies that
2(c1 + x) = (c1 + x) + (c1 + y) = 2(c1 + y) = a1 + b1 ≤ a + c ≤ u. By
hypothesis, we get a1 ≤ b1 or b1 ≤ a1. As a result, a = a1 + d ≤ b1 + d = b or
b = b1 + d ≤ a1 + d = a, and therefore the proof is true by Theorem 11. ¤

Corollary 14. Let I be an exchange ideal of a ring R. Then the following are
equivalent:

(1) I is separative.
(2) For any A,B,C ∈ FP (I), A⊕ C ∼= B ⊕ C .⊕ R with C .⊕ A,B =⇒

A .⊕ B or B .⊕ A.
(2) For any A,B ∈ FP (I), 2A ∼= A ⊕ B ∼= 2B .⊕ R =⇒ A .⊕ B or

B .⊕ A.

Proof. In view of Lemma 4, V (I) is a refinement monoid. Let FP (R) denote
the class of finitely generated projective right R-modules, and let V (R) be
the monoid of isomorphism classes of objects from FP (R). Then V (I) is a
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submonoid of V (R). Furthermore, we prove that V (R) is a refinement extension
of the refinement monoid V (I) and V (R) contains an order-unit [R]. Therefore
we complete the proof by Theorem 11 and Theorem 13. ¤

Recall that a ring R is regular provided that for every a ∈ R there exists
x ∈ R such that a = axa. We say that a ∈ R is one-sided unit-regular if there
exists a right or left invertible u ∈ R such that a = aua. We write r(a) and
`(a) for the right and left annihilators of a ∈ R. In [3, Proposition 6.2], Ara
et al. proved that a regular ring R is separative if and only if each a ∈ R
satisfying Rr(a) = `(a)R = R(1−a)R is unit-regular. We generalize this result
as follows.

Corollary 15. Let I be an ideal of a regular ring R. Then the following are
equivalent:

(1) I is separative.
(2) Each a ∈ R satisfying RaR

⋂
R(1 − a)R ⊆ Rr(a)

⋂
`(a)R

⋂
I is one-

sided unit-regular.
(3) Each a ∈ R satisfying Rr(a) = `(a)R = R(1 − a)R ⊆ I is one-sided

unit-regular.

Proof. (1)⇒(2) Suppose RaR
⋂
R(1 − a)R ⊆ Rr(a)

⋂
`(a)R

⋂
I. Then R =(

r(a)⊕ r(1− a)
)⊕B for a right R-module B, and so aR = ar(1− a) + aB =

ar(1−a)⊕aB. Assume that a = aca for a c ∈ R. Then R = r(a)⊕r(1−a)⊕B =
(1−ac)R⊕r(1−a)⊕aB. This yields r(a)⊕B ∼= (1−ac)R⊕aB with B ∼= aB. Let
ϕ : aB → (1−a)aB given by ϕ(ar) = (1−a)ar for any r ∈ B. It is easy to verify
that ϕ is a right R-module isomorphism, and so B ∼= a(1 − a)B = a(1 − a)R.
As a(1 − a)R ⊆ RaR

⋂
R(1 − a)R ⊆ Rr(a), it follows by [5, Corollary 2.23]

that B .⊕ mr(a) for some m ∈ N. As a(1 − a)R ⊆ RaR
⋂
R(1 − a)R ⊆

`(a)R = R(1− ac)R. By [5, Corollary 2.23] again, B .⊕ n(1− ac)R for some
n ∈ N. Since a(1 − a) ∈ I, we see that B ∈ FP (I). Let MR denote the class
of all right R-modules, and let W (R) be the monoid of isomorphism classes
of objects from MR. Analogously to Theorem 9, we prove that W (R) is a
refinement extension of the refinement monoid V (I). By Corollary 8, we get
r(a) ∼= (1−ac)R ∼= R/aR. This implies that a ∈ R is unit-regular, as required.

(2) ⇒ (3) is obvious.
(3)⇒(1) Suppose A⊕C ∼= B ⊕C .⊕ R and C .⊕ A,B for some A,B,C ∈

FP (I). Write R = A1 ⊕C1 ⊕D = A2 ⊕C2 ⊕D, where A1
∼= A, C1

∼= C ∼= C2

and A2
∼= B. Let a ∈ R induce an endomorphism of RR, which is zero on A1,

an isomorphism from C1 onto C2, and the identity on D. Then (1 − a)R =
(1−a)(A1⊕C1); hence, a ∈ 1+I. Let ϕ : A1⊕C1 → (1−a)(A1⊕C1) be a right
R-module given by ϕ(x) = (1−a)x for any x ∈ A1⊕C1. Since (1−a)(A1⊕C1)
is a projective right R-module, (1− a)R .⊕ A1 ⊕ C1 .⊕ 2A1 = 2r(a). By [5,
Corollary 2.23], (1 − a)R ⊆ Rr(a). This yields R(1 − a)R = Rr(a). Assume
that a = aca for a c ∈ R. Then (1 − a)R .⊕ A1 ⊕ C1

∼= A2 ⊕ C2 .⊕
2A2 = 2(R/aR) ∼= 2(1 − ac)R. Using [5, Corollary 2.23] again, (1 − a)R ⊆
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R(1 − ac)R = `(a)R, and then R(1 − a)R = `(a)R. By assumption, a ∈ R
is one-sided unit-regular. This shows that r(a) .⊕ R/aR or R/aR .⊕ r(a).
Thus we have either A .⊕ B or B .⊕ A. According to Corollary 14, we
complete the proof. ¤

As is well known, every one-sided unit-regular ring is separative. It follows
from Corollary 15 that a regular ring R is separative if and only if each a ∈ R
satisfying RaR(1− a)R ⊆ Rr(a)`(a)R is one-sided unit-regular.

Acknowledgements. The author would like to thank the referee for his/her
corrections, which lead to the new version of this paper.

References

[1] P. Ara, Extensions of exchange rings, J. Algebra 197 (1997), no. 2, 409–423.
[2] , Stability properties of exchange rings, International Symposium on Ring Theory

(Kyongju, 1999), 23–42, Trends Math., Birkhauser Boston, Boston, MA, 2001.
[3] P. Ara, K. R. Goodearl, K. C. O’Meara, and E. Pardo, Separative cancellation for pro-

jective modules over exchange rings, Israel J. Math. 105 (1998), 105–137.
[4] G. Brookfield, Monoids and Categories of Noetherian Modules, Ph. D. Thesis, University

of California, 1997.
[5] K. R. Goodearl, Von Neumann Regular Rings, Monographs and Studies in Mathematics,

4. Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979.
[6] , Von Neumann regular rings and direct sum decomposition problems, Abelian

groups and modules (Padova, 1994), 249–255, Math. Appl., 343, Kluwer Acad. Publ.,
Dordrecht, 1995.

[7] E. Pardo, Comparability, separativity, and exchange rings, Comm. Algebra 24 (1996),
no. 9, 2915–2929.

[8] F. Wehrung, Restricted injectivity, transfer property and decompositions of separative
positively ordered monoids, Comm. Algebra 22 (1994), no. 5, 1747–1781.

Department of Mathematics
Hangzhou Normal University
Hangzhou 310036, China
E-mail address: huanyinchen@yahoo.cn


