ON SEPARATIVE REFINEMENT MONOIDS

HUANYIN CHEN

ABSTRACT. We obtain two new characterizations of separativity of refinement monoids, in terms of comparability-type conditions. As applications, we get several equivalent conditions of separativity for exchange ideals.

A commutative monoid (M, +, 0) has a refinement (or is a refinement monoid) if, for all a, b, c and d in M, the equation a+b=c+d implies the existence of $a_1, b_1, c_1, d_1 \in M$ such that $a = a_1 + d_1, b = b_1 + c_1, c = a_1 + b_1$ and $d = d_1 + c_1$. These equations are represented in the form of a refinement matrix: $\begin{pmatrix} a & b \\ d & b_1 \\ d_1 & c_1 \end{pmatrix}$. Refinement monoids have been extensively studied in recent years (cf. [4] and [7]). A commutative monoid M is separative if, for all $a, b \in M$, 2a = a + b = 2bimplies a = b. Separativity is a weak form of cancellativity for commutative monoids. Many authors have studied separative refinement monoids from various view-points (see [3-4] and [6-7]). In this article, we get two new characterizations of separative refinement monoids. We prove that every separative refinement monoid can be characterized by a certain sort of comparability. Also we introduce the concept of refinement extensions of a refinement monoid. We see that every separative refinement monoid can be characterized by such refinement extensions. Let I be an ideal of a ring R. We use FP(I) to denote the class of finitely generated projective right *R*-modules *P* with P = PI and V(I) to denote the monoid of isomorphism classes of objects from FP(I). Following Ara et al. (see [3]), an exchange ideal I of a ring R is separative if V(I) is a separative refinement monoid, that is, for any $A, B, C \in FP(I)$, $A \oplus A \cong A \oplus B \cong B \oplus B \Longrightarrow A \cong B$. We say that R is a separative ring if R is separative as an ideal of R.

Separativity plays a key role in the direct sum decomposition theory of exchange rings. It seems rather likely that non-separative exchange rings should exist. We say that an exchange ring R satisfies the comparability axiom provided that, for any finitely generated projective right R-modules A and B, either $A \leq^{\oplus} B$ or $B \leq^{\oplus} A$. In [7, Theorem 3.9], Pardo showed that every

O2009 The Korean Mathematical Society

Received June 13, 2008; Revised January 9, 2009.

 $^{2000\} Mathematics\ Subject\ Classification.\ 20M14,\ 16E50.$

Key words and phrases. refinement monoid, separativity, exchange ideal.

exchange ring satisfying the comparability axiom is separative. But the converse is not true. For instance, there exist unit-regular rings which do not satisfy the comparability axiom (see [5, Example 8.7]). We will give a new characterization of the separativity for exchange ideals of a ring, in terms of comparability-type conditions. Using refinement extensions of a refinement monoid, we observe that the separativity over exchange ideals possesses nice weak cancellation properties for arbitrary right modules.

Throughout, all monoids are commutative, so we will write + for the monoid operation and 0 for the identity elements of all monoids. Every monoid M will be endowed with the preordering \leq defined by $a \leq b$ in M if and only if there exists some $c \in M$ such that a + c = b. A monoid M has an order-unit u if $u \in M$ is an element such that every element of M is bounded above by a positive multiple of u. A subclass I of a monoid M is an o-ideal provided that $(\forall x, y \in I \iff x + y \in I)$. All rings in this article are associative with identities and all modules are right unitary modules. Let A and B be right R-modules. The symbol $A \leq^{\oplus} B$ means that A is isomorphic to a direct summand of B and nA means that the direct sum of n copies of A. We always use \mathbb{N} to denote the set of all positive integers.

For refinement monoids M, we note that separativity can be reduced to the statement $(\forall a, b, c \in M)(a + c = b + c \text{ with } c \leq a, b \Longrightarrow a = b)$. In general, this property is weaker than separativity. This follows very easily from [3, Lemma 2.1].

Theorem 1. Let M be a refinement monoid. Then the following are equivalent:

- (1) M is separative.
- (2) $(\forall a, b \in M)(a = 2b \text{ and } 3a = 3b \Longrightarrow a \leq b \text{ or } b \leq a).$
- (3) $(\forall a, b, c \in M)(c + a = c + b \text{ with } c \leq a, b \Longrightarrow a \leq b \text{ or } b \leq a).$

Proof. $(1) \Rightarrow (2)$ is clear by [3, Lemma 2.1].

 $(2) \Rightarrow (3)$ Given c + a = c + b with $c \le a, b$ in M, then there exist $e, f \in M$ such that a = c + e and b = c + f; hence, 2a = a + (c + e) = (b + c) + e = b + a. Likewise, we have 2b = a + b. This implies that 2a = 2b. Furthermore, we get 3a = a + 2b = (a + b) + b = 3b. So either $a \le b$ or $b \le a$.

(3) \Rightarrow (1) Suppose that c + a = c + b with $c \le a, b$. It will suffice to show that a = b. In view of [3, Lemma 2.7], we have a refinement matrix over $M : \stackrel{b}{_{c}} \stackrel{c}{_{(b_{1}}} \stackrel{a_{1}}{_{c_{1}}})$, where $c_{1} \le a_{1}, b_{1}$. From $a_{1} + c_{1} = b_{1} + c_{1}$ with $c_{1} \le a_{1}, b_{1}$, we deduce that $a_{1} \le b_{1}$ or $b_{1} \le a_{1}$. If $a_{1} \le b_{1}$, then $b_{1} = a_{1} + e$. Thus $c = c_{1} + b_{1} = c_{1} + a_{1} + e = c + e$. As $c \le a, b$, we have a = a + e and b = b + e; hence, $a = a + e = a_{1} + d_{1} + e = b_{1} + d_{1} = b$. The proof of the case $b_{1} \le a_{1}$ is just symmetric from the case $a_{1} \le b_{1}$. By the note above, we obtain the result.

Corollary 2. Let M be a refinement monoid. Then the following are equivalent:

- (1) M is separative.
- (2) $(\forall a, b \in M)(\forall n \in \mathbb{N})(na = nb and (n+1)a = (n+1)b \Longrightarrow a \leq b or b \leq a).$
- (3) $(\forall a, b \in M)(2a = a + b = 2b \Longrightarrow a \le b \text{ or } b \le a).$

Proof. $(1) \Rightarrow (2)$ is obvious by [3, Lemma 2.1].

 $(2) \Rightarrow (3)$ Suppose that 2a = a + b = 2b in M. Then 2a = 2b and 3a = a + (a + b) = 2a + b = 3b. Furthermore, we get 4a = 3b + a = 2b + (a + b) = 4b. Similarly, we deduce that na = nb and (n + 1)a = (n + 1)b $(n \ge 2)$. So $a \le b$ or $b \le a$.

 $(3) \Rightarrow (1)$ Given c + a = c + b with $c \le a, b$ in M, then we have $e, f \in M$ such that a = c + e and b = c + f. It is easy to check that a + a = a + (c + e) = (b + c) + e = b + a. Similarly, b + b = a + b. Hence $a \le b$ or $b \le a$. By virtue of Theorem 1, the result follows.

We say that M is an ordered-separative monoid provided that $(\forall a, b \in M)(a + b = 2b \implies a \leq b)$. In [8, Theorem 4.1], Wehrung proved that if M is separative, then M is order-separative. We note that 'separativity' used in [8] differs from that in this paper. Wehrung's 'separativity' satisfies an additional condition: $(\forall a, b, c \in M)(a + c \leq b + c \text{ with } c \propto b \Rightarrow a \leq b)$. A natural problem asked whether the converse is true. In general, order-separativity does not imply general separativity. Let M be the monoid generated by three elements a, b and c such that 2a = 0, a + b = c, a + c = b and b + c = 2b. Then $M = \{0, a, b, c, 2b, 3b, 4b, \ldots\}$ defined by the following addition:

$$\begin{array}{c|ccccc} + & 0 & a & b & c \\ \hline 0 & 0 & a & b & c \\ a & a & 0 & c & b \\ b & b & c & 2b & 2b \\ c & c & b & 2b & 2b \end{array}$$

and $a + mb = mb, c + mb = (m + 1)b(m \ge 2)$. As 2b = b + c = 2c, M is not a separative monoid. But one checks that M is an ordered-separative monoid. In [4, Proposition 9.5], Brookfield proved that every refinement order-separative monoid is separative. Now we generalize Brookfield's result as follows.

Corollary 3. Let M be a refinement monoid. If $(\forall a, b \in M)(a + b = 2b \Longrightarrow a \le b \text{ or } b \le a)$, then M is separative.

Proof. It is obvious from Corollary 2.

The converse of Corollary 3 is not true. Let $\{0, \infty\}$ be the monoid such that $\infty + \infty = \infty$, and let \mathbb{R}^{++} the subgroup of strictly positive real numbers. Let M be the monoid obtained from $\{0, \infty\} \times \mathbb{R}^{++}$ by adding a zero element. Since $\{0, \infty\}$ and \mathbb{R}^{++} are separative refinement subgroups, we prove that M is a separative refinement monoid. Choose a = (0, 1) and $b = (\infty, 1)$. Then a + b = 2b, while $a \leq b$ and $b \leq a$.

Following Ara (cf. [1-2]), an ideal I of a ring R is an exchange ideal provided that for every $x \in I$ there exist an idempotent $e \in I$ and elements $r, s \in I$ such that e = xr = x + s - xs. Let I be an exchange ideal of a ring R, and let $e \in R$ be an idempotent. By [1, Lemma 1.1], one easily checks that eIe is an exchange ring.

Lemma 4. Let I be an exchange ideal of a ring R. Then for all right Rmodules A, B, C, D such that $A \oplus B \cong C \oplus D$ and $A \in FP(I)$, there are right R-modules $A_1 \cong A_2, B_1 \cong B_2, C_1 \cong C_2, D_1 \cong D_2$ such that $A = A_1 \oplus D_1, B =$ $B_1 \oplus C_1, C = A_2 \oplus B_2$, and $D = D_2 \oplus C_2$.

Proof. Suppose that $\psi : A \oplus B \cong C \oplus D$. Then $A \oplus B = \psi^{-1}(C) \oplus \psi^{-1}(D)$. As $A \in FP(I)$, there is a right *R*-module *E* such that $A \oplus E \cong nR$ for some $n \in \mathbb{N}$. Let $e : nR \to A$ be the projection onto *A*. Then $A \cong e(nR)$, whence $\operatorname{End}_R(A) \cong eM_n(R)e$. As A = AI, we have $e(nR) = e(nR)I \subseteq nI$. Set $e = (\alpha_1, \ldots, \alpha_1) \in M_n(R)$. Then $e(1, 0, \ldots, 0)^T \in nI$; hence, $\alpha_1 \in nI$. Likewise, we have $\alpha_2, \ldots, \alpha_n \in nI$. It follows that $e \in M_n(I)$. Since *I* is an exchange ideal of *R*, $M_n(I)$ is also an exchange ideal of $M_n(R)$, and then $\operatorname{End}_R(A)$ is an exchange ring. Thus *A* has the finitely exchange property. So we can find $B_1 \subseteq \psi^{-1}(C)$ and $B_2 \subseteq \psi^{-1}(D)$ such that $A \oplus B = A \oplus B_1 \oplus B_2$. So $B \cong B_1 \oplus B_2$. As $B_1 \subseteq \psi^{-1}(C) \subseteq B_1 \oplus (A \oplus B_2)$, we get $\psi^{-1}(C) = \psi^{-1}(C) \cap (B_1 \oplus A \oplus B_2) = B_1 \oplus \psi^{-1}(C) \cap (A \oplus B_2)$. Let $C_1 = \psi(C) \cap (A \oplus B_2)$. Then $C \cong \psi^{-1}(C) = B_1 \oplus C_1$, Likewise, we have a right *R*-module D_1 such that $D \cong \psi^{-1}(D) = B_2 \oplus D_1$. In addition, $A \oplus (B_1 \oplus B_2) = A \oplus B = \psi^{-1}(C) \oplus \psi^{-1}(D) = (B_1 \oplus C_1) \oplus (B_2 \oplus D_1)$; hence, $A \cong C_1 \oplus D_1$. Therefore we complete the proof. □

Theorem 5. Let I be an exchange ideal of a ring R. Then the following are equivalent:

- (1) I is separative.
- (2) For any $A, B \in FP(I), C \oplus A \cong C \oplus B$ with $C \leq^{\oplus} A, B \Longrightarrow A \leq^{\oplus} B$ or $B \leq^{\oplus} A$.
- (3) For any $A, B \in FP(I)$, 2A = 2B and $3A = 3B \implies A \lesssim^{\oplus} B$ or $B \lesssim^{\oplus} A$.
- (4) For any $A, B \in FP(I), 2A \cong A \oplus B \cong 2B \Longrightarrow A \lesssim^{\oplus} B \text{ or } B \lesssim^{\oplus} A.$

Proof. In view of Lemma 4, V(I) is a refinement monoid. Applying Theorem 1 and Corollary 2 to V(I), we obtain the result.

Corollary 6. Let I be an exchange ideal of a ring R, and let $m, n \ge 2$ with gcd(m, n) = 1. Then the following are equivalent:

- (1) I is separative.
- (2) For any $A, B \in FP(I)$, $mA \cong mB$ and $nA \cong nB \Longrightarrow A \lesssim^{\oplus} B$ or $B \lesssim^{\oplus} A$.

Proof. (1) \Rightarrow (2) Since I is separative, V(I) is a separative monoid. According to [4, Proposition 8.10], we get $A \cong B$, as desired.

 $(2) \Rightarrow (1)$ Given $2A \cong A \oplus B \cong 2B$ with $A, B \in FP(I)$, then $mA \cong mB$ and $nA \cong nB$ by an easy induction. So either $A \leq^{\oplus} B$ or $B \leq^{\oplus} A$. In view of Theorem 5, I is separative.

So far, we have been investigating separativity only in a refinement monoid. Let M be a refinement submonoid of a monoid N. We say that N is a refinement extension of M in case the following hold:

- (1) M is an o-ideal of N.
- (2) $(\forall b, c, d \in N)(\forall a \in M)(a + b = c + d \Longrightarrow \text{ there exists a refinement} matrix over <math>N : \begin{array}{c} c & a \\ d & a \\ d & c_1 \end{array}$.

We write $\{0, 1, \infty\}$ for the monoid such that $1 + 1 = 1 + \infty = \infty + \infty = \infty$. Since the equation $1 + 1 = \infty + \infty$ can not be refined, $\{0, 1, \infty\}$ is not a refinement monoid. The monoid $\{0, \infty\}$ is a refinement submonoid of $\{0, 1, \infty\}$. Obviously, the condition (1) is equivalent to the statement: $(\forall a \in M)(b \leq a)$ in $N \Longrightarrow b \in M$. Although the condition (2) is satisfied in this case, we claim that $\{0, 1, \infty\}$ is not a refinement extension of $\{0, \infty\}$. This is clear from $1 \leq \infty$ and $1 \notin \{0, \infty\}$. Let \mathbb{Z}^+ be the monoid of non-negative integers, and let $A = \{0, 2, 3, 4, \ldots\}$ be the submonoid of \mathbb{Z}^+ obtained by deleting the number 1. Let $N = A \times \{0, \infty\}$ and $M = 0 \times \{0, \infty\}$. Then N is a refinement extension of the refinement M, while N is not a refinement monoid. As $(2,0) \neq (3,0)$ in N, we see that (2,0) + (4,0) = (3,0) + (3,0) has no a refinement matrix over N. Now we observe that separativity can be partially extended to refinement extensions of a refinement monoid.

Theorem 7. Let N be a refinement extension of a refinement monoid M. Then the following are equivalent:

- (1) M is separative.
- (2) $(\forall a, b \in N)(\forall c \in M)(c + a = c + b \text{ with } c \le a, b \Longrightarrow a = b).$ (3) $(\forall a, b \in N)(\forall c \in M)(2c + a = 2c + b \Longrightarrow c + a = c + b).$

Proof. (1) \Rightarrow (2) Suppose that $c \in M, a, b \in N$ such that c + a = c + b with $c \leq a, b.$ Since N is a refinement extension of M, we have a refinement matrix over N: $c \begin{pmatrix} c & a \\ b_1 & d_1 \end{pmatrix}$. From $c_1 \leq c \leq a = a_1 + d_1$ in N, there exists some $e \in N$ such that $c_1 + e = a_1 + d_1$. As $c_1 \leq c$ and $c \in M$, we deduce that $c_1 \in M$. Furthermore, we get a refinement matrix over N: $a_1 \begin{pmatrix} a'_1 & e' \\ d'_1 & f \end{pmatrix}$. Hence $c_1 = a'_1 + d'_1$ and $a'_1 \leq a_1, d'_1 \leq d_1$. So we can write that $d_1 = d'_1 + d''_1$ for some $d''_1 \in N$. Thus there is a refinement matrix over $N : {c \atop b} {c \atop b_1 + d'_1} {a_1 + d'_1 \atop d''_1}$. Let $c_2 = a'_1, a_2 = a_1 + d'_1, b_2 = b_1 + d'_1$ and $d_2 = d''_1$. We get a refinement matrix over N:

$$(*) \qquad \qquad \begin{array}{c} c & u \\ c & c \\ b & c \\ b_2 & d_2 \end{array}\right)$$

with $c_2 \leq a_2$. In addition, we see that $c_2 \leq c_1$ and $b_1 \leq b_2$. As $c \leq b$, we apply the argument above to the refinement matrix (*) and get a new refinement matrix over N: $c \begin{pmatrix} c_3 & a_3 \\ b_3 & d_3 \end{pmatrix}$ with $c_3 \leq b_3$. Furthermore, we have $c_3 \le c_2 \le a_2 \le a_3$. Thus $c_3 + a_3 = c_3 + b_3 = c \in M$ with $c_3 \le a_3, b_3$. Clearly, $c_3, a_3, b_3 \in M$. As M is a separative monoid, it follows that $a_3 = b_3$. Therefore $a = a_3 + d_3 = b_3 + d_3 = b$, as desired.

 $(2) \Rightarrow (3)$ Suppose that $c \in M$ and $a, b \in N$ such that 2c + a = 2c + b. Then c + (c + a) = c + (c + b) with $c \le c + a, c + b$; hence, c + a = c + b.

 $(3) \Rightarrow (1)$ is trivial by [3, Lemma 2.1].

Let a and b be elements in a monoid. The notation $a \propto b$ means that $a \leq nb$ for some $n \in \mathbb{N}$.

Corollary 8. Let N be a refinement extension of a refinement monoid M. Then the following are equivalent:

- (1) M is separative.
- (2) $(\forall a, b \in N)(\forall c \in M)(c + a = c + b \text{ with } c \propto a, b \Longrightarrow a = b).$

Proof. (1) \Rightarrow (2) Suppose that c + a = c + b and $c \in M, c \propto a, b$. Then we may choose $n \in \mathbb{N}$ such that $c \leq na, nb$. So there exists $d \in N$ such that the hay encode $n \in \mathbb{N}$ such that $c \subseteq \mathbb{N}$ and $(a_1, b_1) = 0$ there exists a $C \cong \mathbb{N}$ such that c+d = a + (n-1)a. Since N is a refinement extension of M, we have a refinement matrix over N: $\begin{pmatrix} c & d \\ (n-1)a \begin{pmatrix} c_1 & d_1 \\ e_1 \end{pmatrix} \end{pmatrix}$. This infers that $a_1 + e_1 = a + (n-2)a$. It follows by $a_1 \leq c \in M$ that $a_1 \in M$. Similarly, we have a refinement matrix over N: $\begin{pmatrix} a & c_2 & d_2 \\ a_1 & e_1 \end{pmatrix}$. Furthermore, we have a refinement matrix $a_{n-2} = e_{n-2}$. over N: $a \begin{pmatrix} a_{n-2} & e_{n-2} \\ a_{n-1} & d_{n-1} \\ e_{n-1} \end{pmatrix}$. Hence $c = c_1 + a_1 = c_1 + (c_2 + a_2) = \cdots = c_1 + a_1$ $c_2 + \cdots + c_{n-1} + a_{n-1}$. Set $c_n = a_{n-1}$. Then $c = c_1 + c_2 + \cdots + c_n$ with $c_1,\ldots,c_n \leq a$. As $c_1 \leq c \in M$, we see that $c_1 \in M$. Similarly, we prove that $c_1 = c_{11} + \cdots + c_{1m_1}$ with $c_{1j} \leq b$ $(j = 1, \dots, m_1)$. Analogously, we have $c_{ij} \in M$ such that $c_i = c_{i1} + \dots + c_{im_i} (i = 2, \dots, n)$. As a result, $(\sum_{\substack{1 \le i \le n, 1 \le j \le m_i}} c_{ij}) + a = (\sum_{\substack{1 \le i \le n, 1 \le j \le m_i}} c_{ij}) + b$ with all $c_{ij} \in M, c_{ij} \le a, b$. By using Theorem 7 repeatedly, we get a = b, as required.

 $(2) \Rightarrow (1)$ is obvious by [3, Lemma 2.1].

Recall that a right R-module P is a R-progenerator in case there exist $m, n \in$ \mathbb{N} and modules P' and R' such that $mR \cong P \oplus P'$ and $nP \cong R \oplus R'$. Let I be a separative exchange ideal of a ring R, and let C be a finitely generated projective right R-module with C = CI. If A and B are any R-progenerators such that $C \oplus A \cong C \oplus B$, we claim that $A \cong B$. This is an immediate consequence of Corollary 8.

Theorem 9. Let I be an exchange ideal of a ring R. Then the following are equivalent:

(1) I is separative.

(2) For any $C \in FP(I)$, $C \oplus A \cong C \oplus B$ with $C \leq^{\oplus} A, B \Longrightarrow A \cong B$ for any right R-modules A and B.

Proof. (1) \Rightarrow (2) Let \mathcal{M}_R denote the class of all right *R*-modules, and let W(R) be the monoid of isomorphism classes of objects from \mathcal{M}_R . Then V(I) is a submonoid of W(R). Suppose that $C \oplus A \cong C \oplus B$ with $C \in FP(I)$ and $A, B \in \mathcal{M}_R$. According to Lemma 4, we have a refinement matrix $\begin{array}{c} C & A \\ B & C \\ \end{array} \begin{pmatrix} C & A \\ B & C \\ \end{array} \begin{pmatrix} C & A \\ B & C \\ \end{array} \begin{pmatrix} C & A \\ B & C \\ \end{array} \begin{pmatrix} C & A \\ B & C \\ \end{array} \begin{pmatrix} C & A \\ B & C \\ \end{array} \begin{pmatrix} C & A \\ B & C \\ \end{array} \begin{pmatrix} C & A \\ B & C \\ \end{array} \end{pmatrix}$ over W(R). This means that W(R) is a refinement extension of the refinement monoid V(I). It follows by Theorem 7 that $A \cong B$.

 $(2) \Rightarrow (1)$ For any $A, B, C \in FP(I), C \oplus A \cong C \oplus B$ with $C \leq^{\oplus} A, B \Longrightarrow A \cong B$, and therefore the result follows from [3, Lemma 2.1].

Corollary 10. Let A be a finitely generated projective right module over a separative exchange ring R. If A and B are any right R-modules such that $C \oplus A \cong C \oplus B$ with $C \leq^{\oplus} A, B$, then $A \cong B$.

Proof. It is obvious by Theorem 9.

Theorem 11. Let N be a refinement extension of a refinement monoid M. If N contains an order-unit u, then the following are equivalent:

- (1) M is separative.
- (2) $(\forall a, b \in N)(\forall c \in M)(c + a = c + b \le u \text{ with } c \le a, b \Longrightarrow a \le b \text{ or } b \le a).$
- $(3) \ (\forall a,b,c\in M)(c+a=c+b\leq u \ with \ c\leq a,b\Longrightarrow a\leq b \ or \ b\leq a).$

Proof. $(1) \Rightarrow (2)$ is obvious by Theorem 7.

 $(2) \Rightarrow (3)$ is trivial.

 $(3) \Rightarrow (1) \text{ Given } c+a = c+b \text{ with } c \leq a, b \text{ in } M, \text{ then we can find some } n \in \mathbb{N}$ such that $c \leq nu$ in N. Since N is a refinement extension of M, by induction, the refinement property also holds for the sum nu. So there exist $c_1, \ldots, c_n \leq u$ such that $c = c_1 + \cdots + c_n$. Hence $c_1 + (c_2 + \cdots + c_n + a) = c_1 + (c_2 + \cdots + c_n + b)$. Let $a_1 = c_2 + \cdots + c_n + a$ and $b_1 = c_2 + \cdots + c_n + b$. Then $c_1 + a_1 = c_1 + b_1$ with $c_1 \in M$ and $c_1 \leq a_1, b_1$. By the proof of Theorem 7, we have a refinement matrix over N: $c_1 \atop (c_1' \atop a_1')$, where $c_1' \leq a_1', b_1'$. It follows from $c_1' + a_1' = c_1' + b_1' = c_1 \leq u$ with $c_1' \leq a_1', b_1'$ that either $a_1' \leq b_1'$ or $b_1' \leq a_1'$. If $a_1' \leq b_1'$, then $b_1' = a_1' + e$. As a result, we get $c_1 = c_1' + b_1' = c_1' + a_1' + e = c_1 + e$. Since $c_1 \leq a_1, b_1$, we see that $a_1 = a_1 + e$ and $b_1 = b_1 + e$, whence $a_1 = a_1 + e = a_1' + d_1 + e = b_1' + d_1 = b_1$. Similarly, we deduce that $a_1 = b_1$ if $b_1' \leq a_1'$. This means that $c_2 + (c_3 + \cdots + c_n + a) = c_2 + (c_3 + \cdots + c_n + b)$. By iteration of this process, we get a = b. Therefore, M is separative, which concludes the proof.

Corollary 12. Let N be a refinement extension of a refinement monoid M. If N contains an order-unit u, then the following are equivalent:

(1) M is separative.

(2) $(\forall a, b \in N)(\forall c \in M)(c + a = c + b \le u \text{ with } c \propto a, b \Longrightarrow a \le b \text{ or}$ $b \leq a$).

Proof. (2) \Rightarrow (1) follows from Theorem 11.

(1) \Rightarrow (2) Suppose that $c + a = c + b \leq u$ and $c \in M, c \propto a, b$. Then we may choose $n \in \mathbb{N}$ such that $c \leq na, nb$. Thus we have $d \in N$ such that c+d = a + (n-1)a. Analogously to Corollary 8, there are refinement matrices over N:

$$\begin{array}{ccc} c & d & a_1 & e_1 & a_{n-2} & e_{n-2} \\ a & \begin{pmatrix} c_1 & d_1 \\ a_1 & e_1 \end{pmatrix}, & a & \begin{pmatrix} c_2 & d_2 \\ a_2 & e_2 \end{pmatrix}, & \dots, & a & \begin{pmatrix} c_{n-1} & d_{n-1} \\ a_{n-1} & e_{n-1} \end{pmatrix}.$$

Let $c_n = a_{n-1}$. Then $c = c_1 + c_2 + \cdots + c_n$ with $c_1, \ldots, c_n \leq a$. Similarly, we prove that $c_1 = c_{11} + \cdots + c_{1m_1}$ with $c_{1j} \le a, b(j = 1, ..., m_1)$. Analogously, we have $c_{ij} \in M$ such that $c_i = c_{i1} + \dots + c_{im_i}$ and $c_{ij} \leq a, b(i = 2, \dots, n, j = 1, \dots, m_i)$. This implies that $(\sum_{1 \leq i \leq n, 1 \leq j \leq m_i} c_{ij}) + a = (\sum_{1 \leq i \leq n, 1 \leq j \leq m_i} c_{ij}) + b$ with all $c_{ij} \in M, c_{ij} \leq a, b$. Using Theorem 7 repeatedly, we conclude that a = b, as desired.

Theorem 13. Let N be a refinement extension of a refinement monoid M. If N contains an order-unit u, then the following are equivalent:

- (1) M is separative.
- (2) $(\forall a, b \in M)(2a = a + b = 2b \le u \Longrightarrow a = b.$
- (3) $(\forall a, b \in M)(2a = a + b = 2b \le u \Longrightarrow a \le b \text{ or } b \le a).$

Proof. $(1) \Rightarrow (2)$ and $(2) \Rightarrow (3)$ are trivial.

 $(3) \Rightarrow (1)$ Given $c + a = c + b \le u$ with $c \le a, b$ and $a, b, c \in M$, it follows by [3, Lemma 2.7] that there is a refinement matrix over $M : {}^{c}_{b} {\begin{pmatrix} c & a \\ c_1 & a_1 \\ b_1 & d \end{pmatrix}}$ with $c_1 \leq a_1, b_1$. So we can find $x, y \in M$ such that $a_1 = c_1 + x$ and $b_1 = c_1 + y$, and then $2c_1 + x = c_1 + a_1 = c = c_1 + b_1 = 2c_1 + y$. This implies that $2(c_1 + x) = (c_1 + x) + (c_1 + y) = 2(c_1 + y) = a_1 + b_1 \le a + c \le u$. By hypothesis, we get $a_1 \leq b_1$ or $b_1 \leq a_1$. As a result, $a = a_1 + d \leq b_1 + d = b$ or $b = b_1 + d \le a_1 + d = a$, and therefore the proof is true by Theorem 11.

Corollary 14. Let I be an exchange ideal of a ring R. Then the following are equivalent:

- (1) I is separative.
- $(2) \ \ \textit{For any } A, B, C \in FP(I), \ A \oplus C \cong B \oplus C \lesssim^{\oplus} R \ \textit{with } C \lesssim^{\oplus} A, B \Longrightarrow$
- $\begin{array}{c} A \leq^{\oplus} B \text{ or } B \leq^{\oplus} A. \\ (2) \text{ For any } A, B \in FP(I), \ 2A \cong A \oplus B \cong 2B \leq^{\oplus} R \Longrightarrow A \leq^{\oplus} B \text{ or } \end{array}$ $B \leq^{\oplus} A.$

Proof. In view of Lemma 4, V(I) is a refinement monoid. Let FP(R) denote the class of finitely generated projective right R-modules, and let V(R) be the monoid of isomorphism classes of objects from FP(R). Then V(I) is a

submonoid of V(R). Furthermore, we prove that V(R) is a refinement extension of the refinement monoid V(I) and V(R) contains an order-unit [R]. Therefore we complete the proof by Theorem 11 and Theorem 13.

Recall that a ring R is regular provided that for every $a \in R$ there exists $x \in R$ such that a = axa. We say that $a \in R$ is one-sided unit-regular if there exists a right or left invertible $u \in R$ such that a = aua. We write r(a) and $\ell(a)$ for the right and left annihilators of $a \in R$. In [3, Proposition 6.2], Ara et al. proved that a regular ring R is separative if and only if each $a \in R$ satisfying $Rr(a) = \ell(a)R = R(1-a)R$ is unit-regular. We generalize this result as follows.

Corollary 15. Let I be an ideal of a regular ring R. Then the following are equivalent:

- (1) I is separative.
- (2) Each $a \in R$ satisfying $RaR \cap R(1-a)R \subseteq Rr(a) \cap \ell(a)R \cap I$ is onesided unit-regular.
- (3) Each $a \in R$ satisfying $Rr(a) = \ell(a)R = R(1-a)R \subseteq I$ is one-sided unit-regular.

Proof. (1)⇒(2) Suppose $RaR \cap R(1-a)R \subseteq Rr(a) \cap \ell(a)R \cap I$. Then $R = (r(a) \oplus r(1-a)) \oplus B$ for a right *R*-module *B*, and so $aR = ar(1-a) + aB = ar(1-a) \oplus aB$. Assume that a = aca for a $c \in R$. Then $R = r(a) \oplus r(1-a) \oplus B = (1-ac)R \oplus r(1-a) \oplus aB$. This yields $r(a) \oplus B \cong (1-ac)R \oplus aB$ with $B \cong aB$. Let $\varphi : aB \to (1-a)aB$ given by $\varphi(ar) = (1-a)ar$ for any $r \in B$. It is easy to verify that φ is a right *R*-module isomorphism, and so $B \cong a(1-a)B = a(1-a)R$. As $a(1-a)R \subseteq RaR \cap R(1-a)R \subseteq Rr(a)$, it follows by [5, Corollary 2.23] that $B \leq^{\oplus} mr(a)$ for some $m \in \mathbb{N}$. As $a(1-a)R \subseteq RaR \cap R(1-a)R \subseteq \ell(a)R = R(1-ac)R$. By [5, Corollary 2.23] again, $B \leq^{\oplus} n(1-ac)R$ for some $n \in \mathbb{N}$. Since $a(1-a) \in I$, we see that $B \in FP(I)$. Let \mathcal{M}_R denote the class of all right *R*-modules, and let W(R) be the monoid of isomorphism classes of objects from \mathcal{M}_R . Analogously to Theorem 9, we prove that W(R) is a refinement extension of the refinement monoid V(I). By Corollary 8, we get $r(a) \cong (1-ac)R \cong R/aR$. This implies that $a \in R$ is unit-regular, as required. (2) ⇒ (3) is obvious.

(3) \Rightarrow (1) Suppose $A \oplus C \cong B \oplus C \lesssim^{\oplus} R$ and $C \lesssim^{\oplus} A, B$ for some $A, B, C \in FP(I)$. Write $R = A_1 \oplus C_1 \oplus D = A_2 \oplus C_2 \oplus D$, where $A_1 \cong A, C_1 \cong C \cong C_2$ and $A_2 \cong B$. Let $a \in R$ induce an endomorphism of R_R , which is zero on A_1 , an isomorphism from C_1 onto C_2 , and the identity on D. Then $(1-a)R = (1-a)(A_1 \oplus C_1)$; hence, $a \in 1+I$. Let $\varphi : A_1 \oplus C_1 \to (1-a)(A_1 \oplus C_1)$ be a right R-module given by $\varphi(x) = (1-a)x$ for any $x \in A_1 \oplus C_1$. Since $(1-a)(A_1 \oplus C_1)$ is a projective right R-module, $(1-a)R \lesssim^{\oplus} A_1 \oplus C_1 \lesssim^{\oplus} 2A_1 = 2r(a)$. By [5, Corollary 2.23], $(1-a)R \subseteq Rr(a)$. This yields R(1-a)R = Rr(a). Assume that a = aca for a $c \in R$. Then $(1-a)R \lesssim^{\oplus} A_1 \oplus C_1 \cong A_2 \oplus C_2 \lesssim^{\oplus} 2A_2 = 2(R/aR) \cong 2(1-ac)R$. Using [5, Corollary 2.23] again, $(1-a)R \subseteq$

 $R(1-ac)R = \ell(a)R$, and then $R(1-a)R = \ell(a)R$. By assumption, $a \in R$ is one-sided unit-regular. This shows that $r(a) \leq^{\oplus} R/aR$ or $R/aR \leq^{\oplus} r(a)$. Thus we have either $A \leq^{\oplus} B$ or $B \leq^{\oplus} A$. According to Corollary 14, we complete the proof.

As is well known, every one-sided unit-regular ring is separative. It follows from Corollary 15 that a regular ring R is separative if and only if each $a \in R$ satisfying $RaR(1-a)R \subseteq Rr(a)\ell(a)R$ is one-sided unit-regular.

Acknowledgements. The author would like to thank the referee for his/her corrections, which lead to the new version of this paper.

References

- [1] P. Ara, Extensions of exchange rings, J. Algebra 197 (1997), no. 2, 409–423.
- [2] _____, Stability properties of exchange rings, International Symposium on Ring Theory (Kyongju, 1999), 23–42, Trends Math., Birkhauser Boston, Boston, MA, 2001.
- [3] P. Ara, K. R. Goodearl, K. C. O'Meara, and E. Pardo, Separative cancellation for projective modules over exchange rings, Israel J. Math. 105 (1998), 105–137.
- [4] G. Brookfield, Monoids and Categories of Noetherian Modules, Ph. D. Thesis, University of California, 1997.
- [5] K. R. Goodearl, Von Neumann Regular Rings, Monographs and Studies in Mathematics,
 4. Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979.
- [6] _____, Von Neumann regular rings and direct sum decomposition problems, Abelian groups and modules (Padova, 1994), 249–255, Math. Appl., 343, Kluwer Acad. Publ., Dordrecht, 1995.
- [7] E. Pardo, Comparability, separativity, and exchange rings, Comm. Algebra 24 (1996), no. 9, 2915–2929.
- [8] F. Wehrung, Restricted injectivity, transfer property and decompositions of separative positively ordered monoids, Comm. Algebra 22 (1994), no. 5, 1747–1781.

DEPARTMENT OF MATHEMATICS HANGZHOU NORMAL UNIVERSITY HANGZHOU 310036, CHINA *E-mail address*: huanyinchen@yahoo.cm