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CERTAIN CURVATURE CONDITIONS ON
AN LP-SASAKIAN MANIFOLD WITH A COEFFICIENT o

UpAy CHAND DE AND KADRI ARSLAN

ABSTRACT. The object of the present paper is to study certain curva-
ture restriction on an LP-Sasakian manifold with a coefficient a. Among
others it is shown that if an LP-Sasakian manifold with a coefficient «
is a manifold of constant curvature, then the manifold is the product
manifold. Also it is proved that a 3-dimensional Ricci semisymmetric
LP-Sasakian manifold with a constant coefficient « is a spaceform.

1. Introduction

In 1989, Matsumoto [6] introduced the notion of LP-Sasakian manifolds.
Then Mihai and Rosca [7] introduced the same notion independently and they
obtained several results in this manifold. In a recent paper, De, Shaikh, and
Sengupta [3] introduced the notion of LP-Sasakian manifolds with a coefficient
a which generalizes the notion of LP-Sasakian manifolds. Recently, T. Ikawa
and his coauthors [4], [5] studied Sasakian manifolds with Lorentzian metric
and obtained several results in this manifold. The object of the present paper
is to study certain curvature restriction on an LP-Sasakian manifold with a
coefficient . After preliminaries, in Section 3 it is shown that if an LP-Sasakian
manifold M™ with a coefficient « is of constant curvature, then the vector field
¢ is a concircular vector field and as an important consequence of this theorem
we prove that such a manifold is the product manifold. In the last section we
study a 3-dimensional LP-Sasakian manifold with a constant coefficient a.

2. Preliminaries

Let M™ be an n-dimensional differentiable manifold endowed with a (1, 1)
tensor field ¢, a contravariant vector field &£, a covariant vector field n and
a Lorentzian metric g of type (0, 2) such that for each point p € M, the
tensor g, : Tp,M x T,M — R is a non-degenerate inner product of signature
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(—,+,+,...,+), where T, M denotes the tangent vector space of M at p and
R is the real number space, which satisfies

(2.1) nE) =-1, ¢*X = X +n(X)g,

(2.2) 9(X, §) = n(X), g(¢ X, ¢Y) = g(X, V) +n(X)n(Y)

for all vectors fields X and Y. Then such a structure (¢,&,7,g) is termed
as Lorentzian almost paracontact structure and the manifold M™ with the
structure (¢, &, 1, g) is called Lorentzian almost paracontact manifold [6]. In a

Lorentzian almost paracontact manifold M™, the following relations hold good
[6]:

(2.3) p& =0, n(¢X) =0,

(2.4) QX,Y) = QY,X), where Q = ¢(X, ¢Y).

In the Lorentzian almost paracontact manifold M™, if the relations

o (VZRY) = alls(X2) X))

+{9(Y, Z2) + n(Y)n(Z)}n(X)], (a70)

(26) AX,Y) = ~(Vx )(Y),

hold where V denotes the operator of covariant differentiation with respect
to the Lorentzian metric g, then M™ is called an LP-Sasakian manifold with
a coefficient « [3]. An LP-Sasakian manifold with a coefficient 1 is an LP-
Sasakian manifold [6]. If a vector field V satisfies the equation of the following
form:
VxV = X +T(X)V,

where (3 is a non-zero scalar function and T is a non-zero 1-form, then V is
called a torse-forming vector field [9]. In a Lorentzian manifold M™, if we
assume that £ is a unit torse-forming vector field, then we have the equation:

(2.7) (Vxn)(Y) = alg(X,Y) +n(X)n(Y)],

where « is a non-zero scalar function. Hence the manifold admitting a unit
torse-forming vector field satisfying (2.7) is an LP-Sasakian manifold with a
coefficient a.. Especially, if ) satisfies

(2.8) (Vxn)(Y) = elg(X,Y) +n(X)n(Y)], ¢ =1,

then M™ is called an LSP-Sasakian manifold [6]. In particular, if « satisfies
(2.7) and the equation of the form:

(2.9) a(X) = pn(X), o(X) = Vxa,
where p is a scalar function. Then ¢ is called a concircular vector field. A
Riemannian manifold satisfying the condition V.S = 0, where S denotes the

Ricci tensor is called Ricci-symmetric. A Riemannian manifold satisfying the
condition R(X,Y).S = 0 is called Ricci-symmetric [8] where R(X,Y") denotes
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the derivation of the tensor algebra at each point of the tangent space. Let us
consider an LP-Sasakian manifold M™ (¢, &, 1, g) with a coefficient «. Then
we have the following relations [3]:

NnR(X,Y)Z)= —a(X)QY,Z) + a(Y)QUX, Z)

(2.10) +a*{g(Y, Z)n(X) — (X, Z)n(Y)},

(2.11) S(X, &) = —va(X)+ (n—1)a’n(X) + a(¢X),

where R, S denote respectively the curvature tensor and the Ricci tensor of
the manifold and ¢ = Trace(¢). We state the following results which will be
needed in latter sections.

Lemma 2.1 ([3]). In an LP-Sasakian manifold M™ with a non-constant coef-
ficient a, one of the following cases occurs:

(i) 0% = (n—1)2]

(ii) a(Y)= —pn(Y), where p = a(§).

Lemma 2.2 ([3]). In a Lorentzian almost paracontact manifold M™ with struc-

ture (¢, &, n, g) satisfying UX,Y) = é(vxn)(Y), where « is a non-zero

scalar function, the vector field & is torse-forming if and only if the relation
2 = (n—1)% holds good.

3. LP-Sasakian manifolds with a coefficient o« which is
of constant curvature

We consider an LP-Sasakian manifold which is of constant curvature. Then
we have

(31) R(Xv K Z» W) = n(%—l)[g(y’ Z)g(Xv W) - Q(X, Z)g(Yv W)]
From (3.1) we have
(3.2) S(Y,Z) = ~g(V. 2)

which implies that the manifold is Einstein and hence the scalar curvature r of
the manifold is given by [3]

(3.3). r=n{pY + (n—1)a?}.
Putting Z = £ in (3.2) we have by virtue of (2.11)
(3.4) a(9Y) = va(¥) +{* = (n = 1a?} n(¥).

Again from (3.1) we have by virtue of (2.2)

(3.5) ZeiR(ei, Z,¢Y, ¢e;) YUY, Z) — g(Y, Z) —n(Y)n(Z)],

:n(n—l)[
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where {e;} is an orthonormal basis of the tangent space at any point of the
manifold and ¢; = g(e;, e;). Now in an LP-Sasakian manifold with a coefficient
a we have the following relation [3]:

n

S(Y,Z) — Z e;R(ei, Z, pY, de;)

— (Ya(2) - a(d2) - (20— Ba*n(Z)}n(Y)
—(n—2)a?g(Y, Z) + (p + va*)QY, Z).
Using (3.2), (3.3), (3.4) and (3.5) in (3.6) we obtain

{Q(n —1)a? + :]id’l} g(Y,Z) — {2¢a2 +(1+

(3.6)

7/12

n—1

m}mx2>
(3.7)

+ {2(n —1a? + W} n(Y)n(Z) = 0.

n—1
We consider the case when « is not constant. In this case, taking a frame
field and contracting over Y and Z we obtain from (3.7) that

(0017 -1 {2a? 4 ) o,

From this equation we find either

(3.5) = (n— 1),

or

(3.9) pY = —2(n —1)a’.

If (3.9) holds, then from (3.3) we obtain
r=—n(n—1)a?

from which we find that « is constant, since r is constant, which contradicts
our assumption that « is non constant.
On the other hand, from (3.8) by virtue of Lemma 2.2 we conclude that &
is torse-forming. We have that
(Vxm)(Y) = B{g(X,Y) + n(X)n(Y)}.
Then from (2.6) we get

0(X.Y) = L{g(X,¥) +n(X)n(V))

o (2009, v)

a
and Q(X,)Y) =g(¢X,Y).
Now from (3.4) and using ¢(X) = X + n(X)& we obtain

n n — 0[2
MY+mym>qmmn+{ P+ ( 1>’<nn&}MY>

n
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or, a(Y)+pn(Y)
or, a(Y) —¢a(Y) =pyn(Y) —pn(Y)
or, (I=v)a(Y)=p(=1+4)n(Y)
o) =p (T2 ov) = = i)
In a similar way using ¢(X) = —X+n(X)¢ in (3.4) we obtain a(X) = —pn(Y).

Since g is non-singular, we have

P(X)

Ya(Y) + pyn(Y)

P (x 1 n(x)6)

o
and

00 = (2 ¢+ ne0e)

It follows from (2.1) tha (g)2 =1 and hence, &« = £8. Thus we have

(3.10) 6(X) = (X +n(X)e.
Thus in both the cases we obtain
a(Y) = —pn(Y).

Hence we can state the following:

Theorem 3.1. If an LP-Sasakian manifold M™ with a coefficient a is a man-
ifold of constant curvature, then the vector field £ is a concircular vector field.

Again since £ is a concircular vector field, we have
(3.11) Vx§ = a[X +n(X)¢],

where (YY) = pn(Y), where p is a scalar function.

Let £+ denote the (n — 1)-dimensional distribution in an LP-Sasakian mani-
fold with coefficient a orthogonal to €. If X and Y belong to £+, where Y #A\X,
then

(3.12) g(X,6) =0
and
(3.13) g(Y, &) =0.

Since (Vxg)(Y,&) =0, it follows from (3.11) and (3.13) that
9(VxY.§) = g(Vx{Y) = ag(X,Y).
Similarly, we get
9(Vy X, §) = g(Vy§, X) = ag(X,Y).
Hence

(3.14) 9(VxY.§) = g(Vy X, ).
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Now [X,Y] = VxY — Vy X. Therefore
9([X,Y],6) = g(VxY = Vy X, ) =0 by (3.14).

Hence [X, Y] is orthogonal to &, i.e., [X, Y] belong to £&+. Thus the distribution
¢ is involutive [2]. Hence from Frobenius’ theorem [2] it follows that &+ is
integrable. This implies that if an LP-Sasakian manifold with a coefficient «
is a manifold of constant curvature, then it is a product manifold. We can
therefore state the following theorem.

Theorem 3.2. If an LP-Sasakian manifold with a coefficient a is a manifold
of constant curvature, then the manifold is the product manifold.

4. 3-dimensional LP-Sasakian manifold with a constant coefficient o

Let us consider a 3-dimensional LP-Sasakian manifold with a constant coef-
ficient . In a 3-dimensional Riemannian manifold we have

R(X,Y)Z = g(Y, 2)QX — ¢(X, Z)QY + S(Y, Z)X — S(X, Z)Y
-y Lo 2)X - (X 2],

where @ is the Ricci operator, i.e., g(QX,Y) = S(X,Y) and r is the scalar
curvature of the manifold.

Since « is constant and dimension of the manifold is 3, equations (2.10) and
(2.11) reduce to

(4.2) n(R(X,Y)Z) = o®[g(Y, Z)n(X) — g(X, Z)n(Y))],

(4.3) S(X,€) =2 a*n(X).

From (4.2) we get

(4.4) R(X,Y)¢ = a’[n(Y)X —n(X)Y].

Putting Z = £ in (4.1) and using (4.4) we have

(4.5) n(Y)QX = n(X)QY = (5 —a?) n(¥)X —n(X)Y].

Putting Y = £ in (4.5) and using (2.1) and (4.3), we get

(4.6) QX = % {(r—20*)X + (r — 6a*)n(X)¢}
SOXY) = 5 {(r—202)g(X.Y) + (r — 6a®In(X)n(Y)} .

An LP-Sasakian manifold is said to be a space form if the manifold is a
space of constant curvature. We assume that i) = trace of ¢ # 0, i.e., £ is not
harmonic [1].
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Using (4.6) in (4.1), we get

r — 402 r—6a?

l9(Y, 2)X = g(X, 2)Y] + ——[9(Y, Z)n(X)¢
—9(X, Zn(Y)E+n(Y)n(Z)X —n(X)n(Z)Y].

Hence we can state the following:

47) R(X,Y)Z =

Theorem 4.1. A 3-dimensional LP-Sasakian manifold with a constant coeffi-
cient o s a space form if and only if the scalar curvature r = 6a2.

Next we consider a 3-dimensional LP-Sasakian manifold with constant co-
efficient v which satisfies the condition

(4.8) R(X,Y).5=0.
From (4.8) we have
(4.9) S(R(X,Y)U,V) + S(U,R(X,Y)V) = 0.
Again from (4.2) we get
(4.10) R(X,6)Z = a*[n(Z)X — g(X, Z)¢].
Putting Y = ¢ in (4.9) and using (4.10) we get
(4.11) n(U)S(X,V) —g(X,U)S(E, V) +n(V)S(U, X) — g(X,V)SU,§) = 0.
Since a?#£0 using (4.3) in (4.11) we have
(4.12) n(U)S(X,V)—2a2g(X,U)n(V)+n(V)S(U, X) —2a%g(X,V)n(V) = 0.
Taking a frame field and contracting over X and U from (4.12) we obtain
(4.13) S(&,V) —8a*n(V) +rn(V) =0.
Using (4.3) in (4.13) we obtain
(r —6a)n(V) = 0.

This gives r = 6a? (since 7(V)#0), which implies by Theorem 4.1 that the
manifold is a space form.

Hence we can state the following:

Theorem 4.2. A 3-dimensional Ricci semi-symmetric LP-Sasakian manifold
with a constant coefficient « is a space form.

Since VS = 0 implies R(X,Y).S = 0, we get the following:

Corollary. A 3-dimensional Ricci symmetric LP-Sasakian manifold with a
constant coefficient « is a space form.
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