황산기가 도입된 피브로인의 제조 및 특성

Preparation and Characterization of Sulfated Fibroin

  • 정대철 (강원대학교 공과대학 생물공학과) ;
  • 이신영 (강원대학교 공과대학 생물공학과) ;
  • 허원 (강원대학교 공과대학 생물공학과)
  • Jeong, Dae-Cheol (Department of Bioengineering and Technology, Kangwon National University) ;
  • Lee, Shin-Young (Department of Bioengineering and Technology, Kangwon National University) ;
  • Hur, Won (Department of Bioengineering and Technology, Kangwon National University)
  • 발행 : 2009.10.29

초록

황산 수용액에 재생 피브로인을 녹이고 가열하여 황산을 반응물과 동시에 촉매로 사용하여 황산-피브로인을 제조 하였다. 황산의 농도 및 반응온도를 달리하여 얻어진 시료로부터 적외선 흡광 스펙트럼, UV 흡광 스펙트럼, NMR 및 GPC를 사용하여 반응조건에 따른 황산기의 도입 정도 및 피브로인 분자의 분해 정도를 분석하였다. 황산-피브로인의 수율은 5%의 황산을 사용하여 $60^{\circ}C$에서 반응시킬 때 가장 높았으며 적외선 흡광 스펙트럼의 $1109\;cm^{-1}$의 피크가 나타내는 도입된 황산기의 량은 황산의 농도가 증가하면 같이 증가하였다. 단백질에 도입된 황산기는 피브로인 분자를 주로 구성하고 있는 세린 및 타이로신의 hydroxyl 그룹과 반응하여 O-sulfate ester를 형성할 것으로 예상되는데, 이는 274 nm에서의 UV 흡광도의 감소 및 $3300\;cm^{-1}$의 적외선 흡광 스펙트럼의 감소가 관찰되는 결과와 일치하였다. GPC 분석을 통하여 황산-피브로인이 가수 분해되어 원래 피브로인의 분자량 보다 분자량이 작으며 동시에 가수분해된 저분자 황산 피브로인 펩타이드와 덜 가수분해된 비교적 분자량이 큰 펩타이드로 구성되어 있음이 확인되고 있다.

Silk fibroin is a structural protein from Bombyx mori and can be sulfated to provide biofunctional polypeptides showing antiviral and anticoagulating activities. However, the sulfated fibroins have not been characterized enough to present their compositions and structures. In this report, sulfation reaction was investigated by varying the reaction temperature and sulfuric acid concentration and analysis of the resulting peptides were carried out. The degree of sulfation was proportion to sulfuric acid concentration but the maximum product yield was obtained at $60^{\circ}C$ and 5% of sulfuric acid concentration. FT-IR spectrum, UV absorption and NMR spectrum support that o-sulfate ester was formed at the hydroxyl group of serine and tyrosine residues. Size exclusion chromatography identified that sulfated fibroin was composed of a highly hydrolyzed polypeptide mixtures and peptides of relatively higher molecular weight.

키워드

참고문헌

  1. Zhou, C., F. Confalonieri, M. Jacquet, R. Perasso, Z. G. Li, and J. Janin (2001) Silk fibroin: Structural implications of a remarkable amino acid sequence. Proteins: Struct. Funct. Genet. 44: 119-122 https://doi.org/10.1002/prot.1078
  2. Inoue, S., K. Tanaka, F. Arisaka, S. Kimura, K. Ohtomo, and S. Mizuno (2000) Silk fibroin of Bombyx moriis secreted, assembling a high molecular mass elementary unit consisting of h-chain, l-chain, and p25, with a 6:6:1 molar ratio. J. Biol. Chem. 275: 40517-40528 https://doi.org/10.1074/jbc.M006897200
  3. Altman, G. H., F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplan (2003) Silk-based biomaterials. Biomaterials 24: 401-416 https://doi.org/10.1016/S0142-9612(02)00353-8
  4. Inouye, K., M. Kurokawa, S. Nishikawa, and M. Tsukada (1998) Use of Bombyx mori silk fibroin as a substratum for cultivation of animal cells. J. Biochem. Biophys. Methods 37: 159-164 https://doi.org/10.1016/S0165-022X(98)00024-4
  5. Mandal, B. B., and S. C. Kundu (2009) Cell proliferation and migration in silk fibroin 3d scaffolds. Biomaterials 30, 2956-2965 https://doi.org/10.1016/j.biomaterials.2009.02.006
  6. Lovett, M., C. Cannizzaro, L. Daheron, B. Messmer, G. Vunjak-Novakovic, and D. L. Kaplan (2007) Silk fibroin microtubes for blood vessel engineering. Biomaterials 28: 5271-5279 https://doi.org/10.1016/j.biomaterials.2007.08.008
  7. Murphy, A. R., P. S. John, and D. L. Kaplan (2008) Modification of silk fibroin using diazonium coupling chemistry and the effects on hMSC proliferation and differentiation. Biomaterials 29: 2829-2838 https://doi.org/10.1016/j.biomaterials.2008.03.039
  8. Gotoh, Y., M. Tsukada, S. I. Aiba, and N. Minoura (1996) Chemical modification of silk fibroin with n-acetyl-chito-oligosaccharides. Int. J. Biol. Macromol. 18: 19-26 https://doi.org/10.1016/0141-8130(95)01039-4
  9. Tamada, Y. (2003) Sulfation of silk fibroin by sulfuric acid and anticoagulant activity. J. Appl. Polym. Sci. 87: 2377-2382 https://doi.org/10.1002/app.12022
  10. Tamada, Y. (2004) Sulfation of silk fibroin by chlorosulfonic acid and the anticoagulant activity. Biomaterials 25: 377-383 https://doi.org/10.1016/S0142-9612(03)00533-7
  11. Gotoh, K., H. Izumi, T. Kanamoto, Y. Tamada, and H. Nakashima (2000) Sulfated fibroin, a novel sulfated peptide derived from silk, inhibits human immunodeficiency virus replication in vitro. Biosci. Biotechnol. Biochem. 64: 1664-1670 https://doi.org/10.1271/bbb.64.1664
  12. Ma, X., C. Cao, and H. Zhu (2006) The biocompatibility of silk fibroin films containing sulfonated silk fibroin. J. Biomed. Mater. Res., Part B b78: 89-96
  13. Sugino, R., H. Masuda, J. Yao, T. Kameda, K. Enomoto, S. Amiya, A. Suzuki, and T. Asakura (2000) Structural characterization of regenerated Bombyx mori silk fibroin. Polymer preprints, Japan 49: E 529
  14. Zhang, Y. P., R. N. Lewis, R. S. Hodges, and R. N. McElhaney (1992) FTIR spectroscopic studies of the conformation and amide hydrogen exchange of a peptidemodel of the hydrophobic transmembrane alpha-helices of membrane proteins. Biochemistry 31: 11572-11578 https://doi.org/10.1021/bi00161a041
  15. Gupta-Bhaya, P. (1975) NMR study of the structure of short-chain peptides in solution. Biopolymers 14: 1143-1160 https://doi.org/10.1002/bip.1975.360140604
  16. Previero, A., J. C. Cavadore, J. Torreilles, and M. A. Coletti-Previero (1979) Specific sulfonation of tyrosine, tryptophan and hydroxy-amino acids in peptides. Biochim. Biophys. Acta 581: 276-282