Effects of Hepatocyte Growth Factor on the PSA Signaling Pathway of U-251-MG Cells

U-251-MG 세포에서 PSA 경로에 작용하는 Hepatocyte Growth Factor의 효과

  • Kim, Hwan-Gyu (Division of Biological Sciences, Research Center of Bioactive Materials, Chonbuk National University)
  • 김환규 (전북대학교 생물과학부, 생리활성물질연구소)
  • Published : 2009.10.29

Abstract

Hepatocyte growth factor (HGF) and its receptor play an important role in the formation and progression of glioma. In this study, I investigated the ability of HGF to recover of the PSA siRNA-suppressed cell proliferation, migration and invasion in U-251-MG cells. PSA siRNA-transfected U-251-MG cells showed the reduction of the proliferation, migration and invasion with compared to control. Treatment of HGF on the PSA siRNA-transfected U-251-MG cells recovered the ability of proliferation, migration and invasion. These data suggest that PSA and HGF may use unique and parallel signaling cascade leading to the proliferative, migrative and invasive phenotype of U-251-MG cells. I also showed that PSA cooperated with HGF to a migrative and invasive phenotype via the increased secretion of matrix metalloproteinase-2 (MMP-2) and MMP-9.

본 연구에서는 U-251-MG 세포를 이용하여 증식, 이동, 침윤 및 단백질분해효소의 분비에 미치는 PSA와 HGF의 효과를 확인하였다. 그 결과, PSA siRNA에 의해 U-251-MG 세포의 증식은 약 37% 억제되었으나, HGF 처리 (10 ng/mL)에 의해 증식이 약 1.4배 증가되었다. PSA siRNA에 의한 U-251-MG 세포의 이동은 약 60%가 억제되었으나, HGF 처리에 의해 이동이 약 1.3배 증가되었다. 또한, PSA siRNA에 의해 U-251-MG 세포의 침윤이 약 67% 억제되었으나 HGF 처리에 의해 세포의 침윤이 약 4.3배 증가되었다. PSA siRNA처리에 의해 MMP-2의 분비는 약 25%, MMP-9의 분비는 약 20% 억제되었으며, HGF에 의해 PSA siRNA에 의해 억제된 MMP-2 및 MMP-9의 분비가 약 2.8배 및 3.5배 증가되었다. HGF 처리에 의해 플라스민의 분비량은 약 14배 증가되었고, PSA를 억제한 U-251-MG 세포에 HGF를 처리한 결과, 플라스민의 분비가 약 1.6배 증가하였다. 또한, PSA siRNA에 의해 MMP-2의 발현은 유의할만한 변화가 없었으나, MMP-9의 발현은 약 85% 억제되었다. PSA를 억제시킨 U-251-MG 세포에 HGF를 처리한 결과, MMP-2의 발현은 약 5.7배, MMP-9의 발현은 약 6.3배 증가되었다. 한편, MMPs의 광범위 억제제인 BB-94 처리에 의해 U-251-MG 세포의 증식, 이동 및 침윤이 유의할만하게 억제 된 것은 MMP-2 및 MMP-9이 U-251-MG 세포의 증식, 이동 및 침윤에 관여할 것임을 시사해준다.

Keywords

References

  1. Boccaccio, C. and P. M. Comoglio (2006) Invasive growth: a MET-driven genetic programme for cancer and stem cells. Nat. Rev. Cancer 6: 637-645 https://doi.org/10.1038/nrc1912
  2. Tu, H., Z. Zhou, Q. Liang, Z. Li, D. Li, J. Qing, H. Wang, and L. Zhang (2009) CXCR4 and SDF-1 production are stimulated by hepatocyte growth factor and promote glioma cell invasion. Onkologie 32: 331-336 https://doi.org/10.1159/000216352
  3. Buchstein, N., D. Hoffmann, H. Smola, S. Lang, M. Paulsson, C. Niemann, T. Krieg, and S. A. Eming (2009) Alternative proteolytic processing of hepatocyte growth factor during wound repair. Am. J. Pathol. 174: 2116-2128 https://doi.org/10.2353/ajpath.2009.080597
  4. Knowles, L. M., L. P. Stabile, A. M. Egloff, M. E. Rothstein, S. M. Thomas, C. T. Gubish, E. C. Lerner, R. R. Seethala, S. Suzuki, K. M. Quesnelle, S. Morgan, R. L. Ferris, J. R. Grandis, and J. M. Siegfried (2009) HGF and c-Met participate in paracrine tumorigenic pathways in head and neck squamous cell cancer. Clin. Cancer Res. 15: 3740-3750 https://doi.org/10.1158/1078-0432.CCR-08-3252
  5. Abounader, R. and J. Laterra (2005) Scatter factor/ hepatocyte growth factor in brain tumor growth and angiogenesis. Neuro. Oncol. 7: 436-451 https://doi.org/10.1215/S1152851705000050
  6. You, W. K. and D. M. McDonald (2008) The hepatocyte growth factor/c-Met signaling pathway as a therapeutic target to inhibit angiogenesis. BMB Rep. 41: 833-839 https://doi.org/10.5483/BMBRep.2008.41.12.833
  7. Kim, H. G. and G. Y. Koh (2000) Lipopolysaccharide activates matrix metalloproteinase-2 in endothelial cells through an NF-kB-dependent pathway. Biochem. Biophys. Res. Commu. 269: 401-405 https://doi.org/10.1006/bbrc.2000.2308
  8. Oh, I. S., S. S. So, K. Y. Jahng, and H. G. Kim (2002) Hepatocyte growth factor upregulates thymosin $\beta$4 in human umbilical vein endothelial cells. Biochem. Biophys. Res. Commun. 296, 401-405 https://doi.org/10.1016/S0006-291X(02)00888-4
  9. Oh, I. S., S. S. So, and H. G. Kim (2003) Effect of hepatocyte growth factor on the migration of human umbilical vein endothelial cells. Korean J. Biotechnol. Bioeng. 18: 485-489
  10. Grant, D. S., H. K. Kleinman, I. D. Goldberg, M. M. Bhargava, B. J. Nickoloff, J. L. Kinsella, P. Polverini, and E. M. Rosen (1993) Scatter factor induces blood vessel formation in vivo. Proc. Natl. Acad. Sci. 90: 1937-1941 https://doi.org/10.1073/pnas.90.5.1937
  11. Koontongkaew, S., P. Amornphimoltham, and B. Yapong (2009) Tumor-stroma interactions influence cytokine expression and matrix metalloproteinase activities in paired primary and metastatic head and neck cancer cells. Cell Biol. Int. 33: 165-173 https://doi.org/10.1016/j.cellbi.2008.10.009
  12. Wang, H. and J. A. Keiser (2000) Hepatocyte growth factor enhances MMP activity in human endothelial cells. Biochem. Biophys. Res. Commun. 272: 900-905 https://doi.org/10.1006/bbrc.2000.2852
  13. Lamszus, K., N. O. Schmidt, L. Jin, J. Laterra, D. Zagzag, D. Way, M. Witte, M. Weinand, I. D. Goldberg, M. Westphal, and E. M. Rosen (1998) Scatter factor promotes motility of human glioma and neuromicrovascular endothelial cells. Int. J. Cancer 75: 19-28 https://doi.org/10.1002/(SICI)1097-0215(19980105)75:1<19::AID-IJC4>3.0.CO;2-4
  14. Lee, S. H. and H. G. Kim (2009) Cobalt chloride-induced downregulation of puromycin-sensitive aminopeptidase suppresses the migration and invasion of PC-3 cells. J. Microbiol. Biotechnol. 19: 530-536 https://doi.org/10.4014/jmb.0807.438
  15. Klein, S., F. G. Giancotti, M. Presta, S. A. Albelda, C. A. Buck, and D. B. Rifkin (1993) Basic fibroblast growth factor modulates integrin expression in microvascular endothelial cells. Mol. Biol. Cell 4: 973-982
  16. Kakuta, H., A. Tanatani, K. Nagasawa, and Y. Hashimoto (2003) Specific nonpeptide inhibitors of puromycin-sensitive aminopeptidase with a 2,4 (1H, 3H)-quinazolinedione skeleton. Chem. Pharm. Bull. 51: 1273-1282 https://doi.org/10.1248/cpb.51.1273
  17. Komoda, M., H. Kakuta, H. Takahashi, Y. Fujimoto, S. Kadoya, F. Kato, and Y. Hashimoto (2001) Specific inhibitor of puromycin-sensitive aminopeptidase with a homophthalimide skeleton: identification of the target molecule and a structure-activity relationship study. Bioorg. Med. Chem. 9: 121-131 https://doi.org/10.1016/S0968-0896(00)00231-5
  18. Pepper, M. S. (2001) Extracellular proteolysis and angiogenesis. Thromb. Haemost. 86: 346-355