DOI QR코드

DOI QR Code

Differential quadrature method for frequency analysis of membranes having irregular domains using an eight-node curvilinear element

  • Ersoy, Hakan (Akdeniz University, Mechanical Engineering Department, Division of Mechanics) ;
  • Ozpolat, Lutfiye (Akdeniz University, Civil Engineering Department, Division of Mechanics) ;
  • Civalek, Omer (Akdeniz University, Civil Engineering Department, Division of Mechanics) ;
  • Okzturk, Baki (Nigde University Civil Engineering Department, Division of Mechanics)
  • Received : 2009.02.12
  • Accepted : 2009.03.18
  • Published : 2009.09.25

Abstract

Keywords

References

  1. Bert, C.W. and Malik, M. (1996), "The differential quadrature method for irregular domains and application to plate vibration", Int. J. Mech. Sci., 38, 589-606. https://doi.org/10.1016/S0020-7403(96)80003-8
  2. Buchanan, G.R. and Peddieson, Jr. J. (1999), "Vibration of circular and annular membranes with variable density", J. Sound Vib., 226(2), 379-382. https://doi.org/10.1006/jsvi.1999.2177
  3. Civalek, O. (2004), "Application of Differential Quadrature (DQ) and Harmonic Differential Quadrature (HDQ) For Buckling Analysis of Thin Isotropic Plates and Elastic Columns", Eng. Struct., 26(2), 171-186. https://doi.org/10.1016/j.engstruct.2003.09.005
  4. Civalek, O. and Ulker, M. (2004), "Harmonic differential quadrature (HDQ) for axisymmetric bending analysis of thin isotropic circular plates", Int. J. Struct. Eng. Mech., 17(1), 1-14. https://doi.org/10.12989/sem.2004.17.1.001
  5. Irie, T., Yamada, G. and Yoda, K. (1981), "Free vibration of membranes and plates with four curved edges", J. Acoustic Soc. Am., 70(4), 1083-1088. https://doi.org/10.1121/1.386938
  6. Kang, S.W. and Lee, J.M. (2004), "Free vibration analysis of an unsymmetric trapezoidal membrane", J. Sound Vib., 272, 450-460. https://doi.org/10.1016/S0022-460X(03)00798-3
  7. Kang, S.W., Lee, J.M. and Kang, Y.J. (1999), "Vibration analysis of arbitrarily shaped membranes using nondimensional dynamic influence function", J. Sound Vib., 221, 117-132. https://doi.org/10.1006/jsvi.1998.2009
  8. Laura, P.A.A., Bambill, D.V. and Gutierrez, R.H. (1997), "A note on transverse vibrations of circular, annular composite membranes", J. Sound Vib., 205(5), 692-697. https://doi.org/10.1006/jsvi.1996.0839
  9. Leung, A.Y.T., Zhu, B., Zheng, J. and Yang, H. (2003), "A trapezoidal Fourier p-element for membrane vibrations", Thin-Wall. Struct., 41, 479-491. https://doi.org/10.1016/S0263-8231(02)00117-9
  10. Ozpolat, L. (2009), "Free vibration analysis of membranes having straight-sided quadrilateral or curvilinear geometry by differential quadrature and discrete singular convolution methods", M.Sc. Thesis, Akdeniz University (In Turkish).
  11. Quek, S.T. and Tua, P.S. (2008), "Using frequency response function and wave propagation for locating damage in plates", Smart Struct. Syst., 4(3), 343-365. https://doi.org/10.12989/sss.2008.4.3.343
  12. Singh, B.N., Umrao, A. and Shukla, K.K. (2008), "Second-order statistics of natural frequencies of smart laminated composite plates with random material properties", Smart Struct. Syst., 4(1), 19-34. https://doi.org/10.12989/sss.2008.4.1.019
  13. Wu, W.X., Shu, C. and Wang, C.M. (2007), "Vibration analysis of arbitrarily shaped membranes using local radial basis function-based differential quadrature method", J. Sound Vib., 306, 252-270. https://doi.org/10.1016/j.jsv.2007.05.015

Cited by

  1. Free vibration analysis of composite, circular annular membranes using wave propagation approach vol.39, pp.16, 2015, https://doi.org/10.1016/j.apm.2015.03.057