Acknowledgement
Supported by : Technical Research Council of Turkey (TUBITAK)
References
- Aldraihem, O.J. and Baz, A. (2002), "Dynamic stability of stepped beams under moving loads", J. Sound Vib., 250(5), 835-848. https://doi.org/10.1006/jsvi.2001.3976
- Aydogdu, M. and Taskin, V. (2007), "Free vibration analysis of functionally graded beams with simply supported edges", Mater. Des., 28(5), 1651-1656. https://doi.org/10.1016/j.matdes.2006.02.007
- Balasubramanian, T.S., Subramanian, G. and Ramani, T.S. (1990), "Significance and use of very high order derivatives as nodal degrees of freedom in stepped beam vibration analysis", J. Sound Vib., 137, 353-356. https://doi.org/10.1016/0022-460X(90)90803-8
- Durmu , H.K., Ozkaya, E. and Meric, C. (2006), "The use of neural networks for the prediction of wear loss and surface roughness of AA 6351 aluminum alloy", Mater. Des., 27, 156-159. https://doi.org/10.1016/j.matdes.2004.09.011
- Hou, J.W. and Yuan, J.Z. (1998), "Calculation of eigenvalue and eigenvector derivatives for nonlinear beam vibrations", Am. Inst. Aeronaut. Astronaut. J., 26, 872-880.
- Jang, S.K. and Bert, C.W. (1989), "Free Vibration of stepped beams: Exact and numerical solutions", J. Sound Vib., 130(2), 342-346. https://doi.org/10.1016/0022-460X(89)90561-0
- Jang, S.K. and Bert, C.W. (1989), "Free vibrations of stepped beams: higher mode frequencies and effects of steps on frequency", J. Sound Vib., 132, 164-168. https://doi.org/10.1016/0022-460X(89)90882-1
- Karl k, B., Ozkaya E., Ayd n, S. and Pakdemirli M. (1998), "Vibrations of beam-mass systems using artificial neural networks", Comput. Struct., 69, 339-347. https://doi.org/10.1016/S0045-7949(98)00126-6
- Krishnan, A., George, G. and Malathi, P. (1998), "Use of finite difference method in the study of stepped beams", Int. J. Mech. Eng. Edu., 26, 11-24. https://doi.org/10.1177/030641909802600103
- Kwon, H.D. and Park, Y.P. (2002), "Dynamic characteristics of stepped cantilever beams connected with a rigid body", J. Sound Vib., 255(4), 701-717. https://doi.org/10.1006/jsvi.2001.4185
- McDonald, P.H. (1991), "Nonlinear dynamics of a beam", Comput. Struct., 40, 1315-1320. https://doi.org/10.1016/0045-7949(91)90401-7
- Naguleswaran, S. (2002), "Natural frequencies, sensitivity and mode shape details of an Euler-Bernoulli beam with one-step change in cross-section and with ends on classical supports", J. Sound Vib., 252, 751-767. https://doi.org/10.1006/jsvi.2001.3743
- Naguleswaran, S. (2003), "Vibration and stability of an Euler-Bernoulli beam with up to three step changes in cross section and axial force", Int. J. Mech. Sci., 45, 1563-1579. https://doi.org/10.1016/j.ijmecsci.2003.09.001
- Pakdemirli, M. and Nayfeh, A. (1994), "Nonlinear vibration of a beam-spring-mass system", J. Vib. Acoust., 166, 433-438.
- Qaisi, M.I. (1997), "A power series solution for the nonlinear vibrations of beams", J. Sound Vib., 199, 587-594. https://doi.org/10.1006/jsvi.1996.0696
- Cetinel, H., Ozyi it, H.A. and Özsoyeller, L. (2002), "Artificial neural networks modelling of mechanical property and microstructure evolution in the tempcore process", Comput. Struct., 80, 213-218. https://doi.org/10.1016/S0045-7949(02)00016-0
- Cevik, M., Ozkaya, E. and Pakdemirli, M. (2002), "Natural frequencies of suspension bridges: An artificial neural network approach", J. Sound Vib., 257(3), 596-604. https://doi.org/10.1006/jsvi.2001.4237
- Oz, H.R., Pakdemirli, M., Ozkaya, E. and Y lmaz, M. (1998), "Non-linear vibrations of a slight curved beam resting on a non-linear elastic foundation", J. Sound Vib., 221(3), 295-309.
- Ozkaya, E. (2002), "Non-linear transverse vibrations of a simply supported beam carrying concentrated masses", J. Sound Vib., 257, 413-424. https://doi.org/10.1006/jsvi.2002.5042
- Ozkaya, E. and Pakdemirli, M. (1999), "Nonlinear vibrations of a beam-mass system with both ends clamped", J. Sound Vib., 221(3), 491-503. https://doi.org/10.1006/jsvi.1998.2003
- Ozkaya, E. and Tekin, A. (2007), "Non-linear vibrations of stepped beam system under different boundary conditions", Struct. Eng. Mech., 27(3), 333-345. https://doi.org/10.12989/sem.2007.27.3.333
- Ozkaya, E. and Oz, H.R. (2002), "Determinations of natural frequencies and stability regions of axially moving beams using artificial neural networks method", J. Sound Vib., 252(4), 782-789. https://doi.org/10.1006/jsvi.2001.3991
- Ozkaya, E., Pakdemirli, M. and Oz, H.R. (1997), "Nonlinear vibrations of a beam-mass system under different boundary conditions", J. Sound Vib., 199, 679-696. https://doi.org/10.1006/jsvi.1996.0663
Cited by
- Size-dependent vibrations of a micro beam conveying fluid and resting on an elastic foundation vol.23, pp.7, 2017, https://doi.org/10.1177/1077546315589666
- Vibration analysis of high nonlinear oscillators using accurate approximate methods vol.46, pp.1, 2013, https://doi.org/10.12989/sem.2013.46.1.137
- Nonlinear vibrations and stability analysis of axially moving strings having nonideal mid-support conditions vol.20, pp.4, 2014, https://doi.org/10.1177/1077546312463760
- Vibrations of an axially accelerating, multiple supported flexible beam vol.44, pp.4, 2012, https://doi.org/10.12989/sem.2012.44.4.521
- Dynamics of axially accelerating beams with multiple supports vol.74, pp.1-2, 2013, https://doi.org/10.1007/s11071-013-0961-1
- Nonlinear vibrations of spring-supported axially moving string vol.81, pp.3, 2015, https://doi.org/10.1007/s11071-015-2086-1
- ANN-Based Wear Performance Prediction for Plasma Nitrided Ti6Al4V Alloy vol.54, pp.1, 2012, https://doi.org/10.3139/120.110289
- Determining the Natural Frequency of Cantilever Beams Using ANN and Heuristic Search vol.32, pp.3, 2018, https://doi.org/10.1080/08839514.2018.1448003
- Predicting shear strength of SFRC slender beams without stirrups using an ANN model vol.61, pp.5, 2017, https://doi.org/10.12989/sem.2017.61.5.605