References
- Chen, J.S., Hu, W. and Hu, H.Y. (2008), "Reproducing Kernel Enhanced Local Radial Basis Collocation Method", Int. J. Numer. Method. E., 75, 600-627. https://doi.org/10.1002/nme.2269
- Chen, J.S., Wang, L., Hu, H.Y. and Chi, S.W. (2009), "Subdomain Radial Basis Collocation Method for Heterogeneous Media", J. Numer. Method. E., 80, 163-190. https://doi.org/10.1002/nme.2624
- Clough, W.R. and Penzien, J. (2003), Dynamics of Structures, 3rd Edition, Computers and Structures, Inc.
- Fasshauer, G.E. (1999), "Solving differential equations with radial basis functions: multilevel methods and smoothing", Mech. Adv. Mater. Struc., 11(2/3), 139-159.
- Ferreira, A.J.M. (2003), "Thick composite beam analysis using a global meshless approximation based on radial basis functions", Mech. Adv. Mater. Struc., 10, 271-284. https://doi.org/10.1080/15376490306743
- Gurgoze, M. (1999), "Transverse vibration of a flexible beam sliding through a prismatic joint", J. Sound Vib., 223(3), 467-482. https://doi.org/10.1006/jsvi.1999.2155
- Hardy, R.L. (1971), "Multiquadric equations of topography and other irregular surfaces", J. Geophys. Res., 176, 1905-1915.
- Hon, Y.C. and Schaback, R. (2001), "On unsymmetric collocation by radial basis functions", Appl. Math. Comput., 119(2-3), 177-186. https://doi.org/10.1016/S0096-3003(99)00255-6
- Hu, H.Y., Chen, J.S. and Hu, W. (2007), "Weighted radial basis collocation method for boundary value problems", Int. J. Numer. Method. E., 69, 2736-2757. https://doi.org/10.1002/nme.1877
- Kansa, E.J. (1990a), "Multiquadrics-a scattered data approximation scheme with applications to computational fluid-dynamics - i. surface approximations and partial derivative estimates", Comput. Math. Appl., 19, 127-145.
- Kansa, E.J. (1990b), "Multiquadrics-a scattered data approximation scheme with applications to computational fluid-dynamics - ii. solutions to parabolic, hyperbolic and elliptic partial differential equations", Comput. Math. Appl., 19, 147-161.
- Kong, L. and Parker, R.G. (2004), "Approximate eigensolutions of axially moving beams with small flexural stiffness", J. Sound Vib., 276, 459-469. https://doi.org/10.1016/j.jsv.2003.11.027
- Lee, U. and Jang, I. (2007), "On the boundary for axially moving beams", J. Sound Vib., 306, 675-690. https://doi.org/10.1016/j.jsv.2007.06.039
- Lee, U. and Oh, H. (2005), "Dynamics of an axially moving viscoelastic beam subject to axial tension", Int. J. Solids Struct., 42, 2381-2398. https://doi.org/10.1016/j.ijsolstr.2004.09.026
- Liu, Y., Liew, K.M., Hon, Y.C. and Zhang, X. (2005), "Numerical simulation and analysis of an electroactuated beam using a radial basis function", Smart Mater. Struct., 14, 1163-1171. https://doi.org/10.1088/0964-1726/14/6/009
- Madych, W.R. and Nelson, S.A. (1992), "Bounds on multivariate polynomials and exponential error estimates for multiquadric interpolation", J. Approx. Theory, 70, 94-114. https://doi.org/10.1016/0021-9045(92)90058-V
- Ozkaya, E. and Pakdemirli, M. (2002), "Group-theoretic approach to axially accelerating beam problem", Acta Mech., 155, 111-123. https://doi.org/10.1007/BF01170843
- Raju, I.S., Phillips, D.R. and Krishnamurthy, T. (2003), "Meshless local Petrov-Galerkin Euler-Bernoulli beam problems: a radial basis function approach", Proceedings of the 44th AIAA/ASME/AHS Structure, Structure Dynamics, and Materials Conference, Norfolk, April.
- Rao, G.V. (1992), "Linear dynamics and active control of an elastically supported traveling string", Comput. Struct., 43(6), 1041-1049. https://doi.org/10.1016/0045-7949(92)90004-J
- Stylianou, M. and Tabarrok, B. (1994), "Finite element analysis of an axially moving beam, part I: time integration", J. Sound Vib., 178(4), 433-453. https://doi.org/10.1006/jsvi.1994.1497
- Sylla, M. and Asseke, B. (2008), "Dynamics of a rotating flexible and symmetric spacecraft using impedance matrix in terms of the flexible appendages cantilever modes", Multibody Syst. Dyn., 19, 345-364. https://doi.org/10.1007/s11044-007-9102-2
- Tadikonda, S.S.K. and Baruh, H. (1992), "Dynamics and control of a translating flexible beam with a prismatic joint", J. Dyn. Syst-T. ASME, 114(3), 422-427. https://doi.org/10.1115/1.2897364
- Tiago, C.M. and Leitao, V.M.A. (2006), "Application of radial basis functions to linear and nonlinear structural analysis problems", Comput. Math. Appl., 51, 1311-1334. https://doi.org/10.1016/j.camwa.2006.04.008
- Wang, L.H., Hu, Z.D., Zhong, Z. and Ju, J.W. (2009), "Hamiltonian dynamic analysis of an axially translating beam featuring time-variant velocity", Acta Mech., 206(3-4), 149-161. https://doi.org/10.1007/s00707-008-0104-9
- Wickert, J.A. and Mote, C.D., Jr. (1991), "Response and discretization methods for axially moving materials", Appl. Mech. Rev., 44(11S), 279-284. https://doi.org/10.1115/1.3121365
- Wu, L.Y., Chung, L.L. and Huang, H.H. (2008), "Radial spline collocation method for analysis of beams", Appl. Math. Comput., 201, 184-199. https://doi.org/10.1016/j.amc.2007.12.012
- Yoo, H.H. (1995), "Dynamics of flexible beams undergoing overall motions", J. Sound Vib., 181(2), 261-278. https://doi.org/10.1006/jsvi.1995.0139
- Yuh, J. and Young, T. (1990), "Dynamic modeling of an axially moving beam in rotation: simulation and experiment", J. Dyn. Syst-T. ASME, 113, 34-40.
- Zhu, W.D. and Ni, J. (2000), "Energetics and stability of translating media with an arbitrarily varying length", J. Vib. Acoust., 122, 295-304. https://doi.org/10.1115/1.1303003
Cited by
- A two-parameter continuation algorithm using radial basis function collocation method for rotating Bose–Einstein condensates vol.252, 2013, https://doi.org/10.1016/j.jcp.2013.06.018
- Dynamic response of clamped axially moving beams: Integral transform solution vol.218, pp.2, 2011, https://doi.org/10.1016/j.amc.2011.05.035
- Radial Basis Collocation Method for the Dynamics of Rotating Flexible Tube Conveying Fluid vol.07, pp.03, 2015, https://doi.org/10.1142/S1758825115500453
- Radial basis functions methods for boundary value problems: Performance comparison vol.84, 2017, https://doi.org/10.1016/j.enganabound.2017.08.019
- Variational Iteration Method for Transverse Vibrations of the Elastic, Tensioned Beam vol.5, pp.3, 2017, https://doi.org/10.18178/ijmmm.2017.5.3.315
- Radial basis function collocation method for a rotating Bose-Einstein condensation with vortex lattices vol.5, pp.2, 2009, https://doi.org/10.12989/imm.2012.5.2.131
- Dynamic stiffness matrix method for axially moving micro-beam vol.5, pp.4, 2009, https://doi.org/10.12989/imm.2012.5.4.385