References
- Ciarlet, P.G. (1978), The finite Element Method for Elliptic Problem, North-Holland, Inc., New York, NY.
- Belytschko, T., Krongauz, Y., Organ, D., Fleming, M. and Krysl, P. (1996), "Meshless methods: an overview and recent development", Comput. Method. Appl. M., 139, 3-49. https://doi.org/10.1016/S0045-7825(96)01078-X
- Gingold, R.A. and Monaghan, J.J. (1977), "Smoothed particle hydrodynamics: theory and application to non-spherical stars", Mon. Not. R. Astron. Soc., 181, 375-389. https://doi.org/10.1093/mnras/181.3.375
- Nayroles, B., Touzot, G. and Villon, P. (1992), "Generalizing the finite element method: diffuse approximation and diffuse elements", Comput. Mech., 10, 301-318.
- Belytschko, T., Lu, Y.Y. and Gu, L. (1994), "Element-free Galerkin methods", Int. J. Numer. Meth. Eng., 37, 229-256. https://doi.org/10.1002/nme.1620370205
- Melenk, J.M. and Babuska, I. (1996), "The partition of unity finite element method: basic theory and applications", Comput. Method. Appl. M., 139, 289-314. https://doi.org/10.1016/S0045-7825(96)01087-0
- Duarte, C.A. and Oden, J.T. (1996), "An h-p adaptive method using clouds", Comput. Method. Appl. M., 139, 237-262. https://doi.org/10.1016/S0045-7825(96)01085-7
- Liu, W.K., Jun, S. and Zhang, Y.F. (1995), "Reproducing kernel particle methods", Int. J. Numer. Meth. Fl., 20, 1081-1106. https://doi.org/10.1002/fld.1650200824
- Chen, J.S., Pan, C., Wu, C.T. and Liu, W.K. (1996), "Reproducing kernel particle methods for large deformation analysis of nonlinear structures", Comput. Method. Appl. M., 139, 195-227. https://doi.org/10.1016/S0045-7825(96)01083-3
- Chen, J.S., Yoon, S., Wang, H.P. and Liu, W.K. (2000), "An improved reproducing kernel particle method for nearly incompressible hyperelastic solids", Comput. Method. Appl. M., 181, 117-145. https://doi.org/10.1016/S0045-7825(99)00067-5
- Chen, J.S., Han, W., You, Y. and Meng, X. (2003), "A reproducing kernel method with nodal interpolation property", Int. J. Numer. Meth. Eng., 56, 935-960. https://doi.org/10.1002/nme.592
- Sukumar, N., Moran, B. and Belytschko, T. (1998), "The natural element method in solid mechanics", Int. J. Numer. Meth. Eng., 43, 839-887. https://doi.org/10.1002/(SICI)1097-0207(19981115)43:5<839::AID-NME423>3.0.CO;2-R
- Atluri, S.N. and Zhu, T.L. (2000) "The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics", Comput. Mech., 25, 169-179. https://doi.org/10.1007/s004660050467
- Kansa, E.J. (1992a), "Multiqudrics - a scattered data approximation scheme with applications to computational fluid dynamics - I. Surface approximations and partial derivatives", Comput. Math. Appl., 19, 127-145.
- Kansa, E.J. (1992b), "Multiqudrics - a scattered data approximation scheme with applications to computational fluid dynamics - II. Solutions to parabolic, hyperbolic and elliptic partial differential equations", Comput. Math. Appl., 19, 147-161.
- Bernardi, C. and Maday, Y. (1997), Handbook of Numerical Analysis, Techniques of Scientific Computing (Part 2), Vol. V., (Eds. Ciarlet, P.G. and Lions, J.L.), Elsevier Science Pub. Co., New York, NY.
- Han, W. and Meng, X. (2001), "Error analysis of the reproducing kernel particle method", Comput. Method. Appl. M., 190, 6157-6181. https://doi.org/10.1016/S0045-7825(01)00214-6
- Hu, H.Y. and Li, Z.C. (2006), "Collocation methods for Poisson's equation", Comput. Method. Appl. M., 195, 4139-4160. https://doi.org/10.1016/j.cma.2005.07.019
- Li, Z.C., Lu, T.T., Hu, H.Y. and Cheng, A.H.D. (2008), Tretftz and Collocation Methods, WIT press, Southampton, Boston.
- Hardy, R.L. (1971), "Multiquadric equations of topography and other irregular surfaces", J. Geophys. Res., 176, 1905-1915.
- Hardy, R.L. (1990), "Theory and applications of multiquadric-biharmonic method: 20 years of discovery", Comput. Math. Appl., 19, 163-208. https://doi.org/10.1016/0898-1221(90)90272-L
- Golub, G.H. and Van Loan, C.F. (1996), Matrix Computations (3rd edition), The Johns Hopkins University Press, Baltimore and London.
- Hu, H.Y. and Chen, J.S. (2009), "An error analysis of collocation method based on reproducing kernel approximation", Numer. Meth. Part. D. E.,(in press).
- Burden, R.L. and Faires, J.D. (2005), Numerical Analysis (8th edition), Thomson Brooks/Cole, Australia, Canada, Mexico, Singapore, Spain, UK, USA.
- Zhang, X., Chen, J.S. and Osher, S. (2008), "A multiple level set method for modeling grain boundary evolution of polycrystalline materials", Interact. Mult. Mech., 1, 178-191.
- Rojek, J. and Onate, E. (2008), "Multiscale analysis using a couple discrete/finite element model", Interact. Mult. Mech., 1, 1-31. https://doi.org/10.12989/imm.2008.1.1.001
Cited by
- Error analysis of collocation method based on reproducing kernel approximation vol.27, pp.3, 2011, https://doi.org/10.1002/num.20539
- Meshfree Methods: Progress Made after 20 Years vol.143, pp.4, 2017, https://doi.org/10.1061/(ASCE)EM.1943-7889.0001176
- Model order reduction for meshfree solution of Poisson singularity problems vol.102, pp.5, 2015, https://doi.org/10.1002/nme.4743
- Weighted Reproducing Kernel Collocation Method and Error Analysis for Inverse Cauchy Problems vol.08, pp.03, 2016, https://doi.org/10.1142/S1758825116500307
- An accelerated, convergent, and stable nodal integration in Galerkin meshfree methods for linear and nonlinear mechanics vol.107, pp.7, 2016, https://doi.org/10.1002/nme.5183
- Perturbation and stability analysis of strong form collocation with reproducing kernel approximation vol.88, pp.2, 2011, https://doi.org/10.1002/nme.3168
- A gradient reproducing kernel collocation method for boundary value problems vol.93, pp.13, 2013, https://doi.org/10.1002/nme.4432
- Stability and dispersion analysis of reproducing kernel collocation method for transient dynamics vol.32, pp.6, 2011, https://doi.org/10.1007/s10483-011-1457-6
- Improved Element-Free Galerkin method (IEFG) for solving three-dimensional elasticity problems vol.3, pp.2, 2009, https://doi.org/10.12989/imm.2010.3.2.123
- The coupling of complex variable-reproducing kernel particle method and finite element method for two-dimensional potential problems vol.3, pp.3, 2009, https://doi.org/10.12989/imm.2010.3.3.277
- Radial basis function collocation method for a rotating Bose-Einstein condensation with vortex lattices vol.5, pp.2, 2009, https://doi.org/10.12989/imm.2012.5.2.131
- An immersed transitional interface finite element method for fluid interacting with rigid/deformable solid vol.13, pp.1, 2009, https://doi.org/10.1080/19942060.2019.1586774
- Investigation of Multiply Connected Inverse Cauchy Problems by Efficient Weighted Collocation Method vol.12, pp.1, 2009, https://doi.org/10.1142/s175882512050012x
- Generalized reproducing kernel peridynamics: unification of local and non-local meshfree methods, non-local derivative operations, and an arbitrary-order state-based peridynamic formulation vol.7, pp.2, 2020, https://doi.org/10.1007/s40571-019-00266-9
- Detecting Inverse Boundaries by Weighted High-Order Gradient Collocation Method vol.8, pp.8, 2009, https://doi.org/10.3390/math8081297
- Gradient Enhanced Localized Radial Basis Collocation Method for Inverse Analysis of Cauchy Problems vol.12, pp.9, 2020, https://doi.org/10.1142/s1758825120501070
- Towards a general interpolation scheme vol.381, pp.None, 2021, https://doi.org/10.1016/j.cma.2021.113830