References
- Arroyo, M. and Ortiz, M. (2006), "Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods", Int. J. Numer. Meth. Eng., 65, 2167-2202. https://doi.org/10.1002/nme.1534
- Belikov, V. V. and Semenov, A. Y. (2000), "Non-Sibsonian interpolation on arbitrary system of points in Euclidean space and adaptive isolines generation", Appl. Number. Math., 32(4), 371-387. https://doi.org/10.1016/S0168-9274(99)00058-6
- Belytschko, T., Lu, Y. Y., and Gu, L. (1994), "Element-free Galerkin methods", Int. J. Numer. Meth. Eng., 37(2), 229-256. https://doi.org/10.1002/nme.1620370205
- Belytschko, T., Organ, D. and Krongauz, Y. (1995), "A coupled finite element-element-free Galerkin method", Comput. Mech., 17, 186-195. https://doi.org/10.1007/BF00364080
- Belytschko, T., Krongauz, Y., Organ, D., Fleming, M. and Krysl, P. (1996), "Meshless methods: An overview and recent developments", Comput. Meth. Appl. Mech. Eng., 139, 3-47. https://doi.org/10.1016/S0045-7825(96)01078-X
- Belytschko, T., Loehnert, S. and Song, J. H. (2008), "Multiscale aggregating discontinuities: A method for circumventing loss of material stability", Int. J. Numer. Meth. Eng., 73, 869-894. https://doi.org/10.1002/nme.2156
- Chen, J. S., Pan, C., Wu, C. T. and Liu, W. K. (1996), "Reproducing kernel particle methods for large deformation analysis of non-linear structures", Comput. Meth. Appl. Mech. Eng., 139, 195-227. https://doi.org/10.1016/S0045-7825(96)01083-3
- Chen, J. S. and Wang, H. P. (2000), "New boundary condition treatments in meshfree computation of contact problems", Comput. Meth. Appl. Mech. Eng., 187, 441-468. https://doi.org/10.1016/S0045-7825(00)80004-3
- Chen, J. S. and Mehraeen, S. (2004), "Variationally consistent multi-scale modeling and homogenization of stressed grain growth", Comput. Meth. Appl. Mech. Eng., 193, 1825-1848. https://doi.org/10.1016/j.cma.2003.12.038
- Chen, J. S. and Mehraeen, S. (2005), "Multi-scale modeling of heterogeneous materials with fixed and evolving microstructures", Model. Simul. Mater. Sc., 13, 95-121. https://doi.org/10.1088/0965-0393/13/1/007
- Chen, J. S., Hu, W. and Hu, H. Y. (2008), "Reproducing kernel enhanced local radial basis collocation method", Int. J. Numer. Meth. Eng., 75, 600-627. https://doi.org/10.1002/nme.2269
- Cook, R. D., Malkus, D. S. and Plesha, M. E. (1998) Concepts and Applications of Finite Element Analysis, John Wiley & Sons, New York.
- Duchon, J. (1977), "Splines minimizing rotation-invariant semi-norms in Sobolev spaces", in Constructive Theory of Functions of Several Variables, Oberwolfach 1976, W. Schempp and K. Zeller (eds.), Springer Lecture Notes in Math. 571, Springer-Verlag, Berlin, 85-100.
- Gu, L. (2003), "Moving kriging interpolation and element-free Galerkin method", Int. J. Numer. Meth. Eng., 56, 1-11. https://doi.org/10.1002/nme.553
- Hill, R. (1963), "Elastic properties of reinforced solids: some theoretical principles", J. Mech. Phys Solid, 11, 357-372. https://doi.org/10.1016/0022-5096(63)90036-X
- Hu, H. Y., Chen, J. S. and Hu, W. (2007), "Weighted radial basis collocation method for boundary value problems", Int. J. Numer. Meth. Eng., 69, 2736-2757. https://doi.org/10.1002/nme.1877
- Jaynes, E. T. (1957), "Information theory and statistical mechanics", Physical Review, 106(4), 620-630. https://doi.org/10.1103/PhysRev.106.620
- Kansa, E. J. (1992a), 'Multiqudrics - a scattered data approximation scheme with applications to computational fluid dynamics - I. Surface approximations and partial derivatives", Comput. Math. Appl., 19, 127-145.
- Kansa, E. J. (1992b), "Multiqudrics - a scattered data approximation scheme with applications to computational fluid dynamics - II. Solutions to parabolic, hyperbolic and elliptic partial differential equations", Comput. Math. Appl., 19, 147-161.
- Lancaster, P. and Salkauskas, K. (1981), "Surfaces generated by moving least squares methods", Math. Comput., 37, 141-158. https://doi.org/10.1090/S0025-5718-1981-0616367-1
- Li, S. and Liu, W. K. (2002), "Meshfree and particle methods and their applications", Appl. Mech. Review., 55, 1-34. https://doi.org/10.1115/1.1431547
- Liu, G. R. and Gu, Y. T. (2001), "A point interpolation method for two-dimensional solids", Int. J. Numer. Meth. Eng., 50, 937-951. https://doi.org/10.1002/1097-0207(20010210)50:4<937::AID-NME62>3.0.CO;2-X
- Liu, W. K., Jun, S. and Zhang, Y. F. (1995), "Reproducing kernel particle methods", Int. J. Numer. Meth. Fluids., 20, 1081-1106. https://doi.org/10.1002/fld.1650200824
- Lucy, L. (1977), "A numerical approach to testing the fission hypothesis", Astron. J., 82, 1013-1024. https://doi.org/10.1086/112164
- Nemat-Nasser, S., Hori, M. (1993), Micromechanics: Overall Properties of Heterogeneous Materials, Elsevier, Amsterdam.
- Ortiz, M. and Pandolfi, A. (1999), "Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis", Int. J. Numer. Meth. Fluids., 44, 1267-1282. https://doi.org/10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7
- Powell, M. J. D. (1992), "The theory of radial basis function approximation in 1990", in Advances in Numerical Analysis, Light FW (edn), Oxford University Press, Oxford, 303-322.
- Rabczuk, T., Xiao, S. P. and Sauer, M. (2006), "Coupling of mesh-free methods with finite elements: basic concepts and test results, Commun. Numer. Meth. Eng., 22, 1031-1065. https://doi.org/10.1002/cnm.871
- Shannon, C. E. (1948), "A mathematical theory of communication", Bell Syst. Tech. J., 27, 379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
- Smit, R. J. M, Brekelmans, W. A. M. and Meijer, H. E. H. (1998), "Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling", Comput. Meth. Appl. Mech. Eng., 155, 181-192. https://doi.org/10.1016/S0045-7825(97)00139-4
- Sukumar, N. (2004), "Construction of polygonal interpolants: a maximum entropy approach", Int. J. Numer. Meth. Eng., 61, 2159-2181. https://doi.org/10.1002/nme.1193
- Terada, K, Hori, M., Kyoya, T. and Kikuchi, N. (2000), "Simulation of the multi-scale convergence in computational homogenization approaches", Int. J. Solids Struct., 37, 2285-2311. https://doi.org/10.1016/S0020-7683(98)00341-2
- Terada, K., Asai, M. and Yamagishi, M. (2003), "Finite cover method for linear and nonlinear analysis of heterogeneous solids", Int. J. Numer. Meth. Eng., 58, 1321-1346. https://doi.org/10.1002/nme.820
- Van der Sluis, O., Schreurs, P. J. G. and Meijer, H. E. H. (2001), "Homogenization of structured elastoviscoplastic solids at finite strains", Mech. Mater., 33, 499-522. https://doi.org/10.1016/S0167-6636(01)00066-7
- Wang, D, Chen, J. S. and Sun, L. (2003), "Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method", Finite Elem. Anal. Design., 39, 765-782. https://doi.org/10.1016/S0168-874X(03)00058-1
- Wu, C. T., Park, C. K. and Chen, J. S. (2009), "A generalized meshfree approximation for the meshfree analysis of solid", Int. J. Numer. Meth. Eng., submitted.
- Zavattieri, P. D. and Espinosa, H. D. (2001), "Grain level analysis of ceramic microstructures subjected to normal impact loading", Acta Materialia, 49(20), 4291-4311. https://doi.org/10.1016/S1359-6454(01)00292-0
Cited by
- Meshfree-enriched simplex elements with strain smoothing for the finite element analysis of compressible and nearly incompressible solids vol.200, pp.45-46, 2011, https://doi.org/10.1016/j.cma.2011.06.013
- An immersed particle modeling technique for the three-dimensional large strain simulation of particulate-reinforced metal-matrix composites vol.40, pp.4, 2016, https://doi.org/10.1016/j.apm.2015.09.107
- A displacement-based nonlinear finite element formulation using meshfree-enriched triangular elements for the two-dimensional large deformation analysis of elastomers vol.50, 2012, https://doi.org/10.1016/j.finel.2011.09.007
- Numerical modeling of composite solids using an immersed meshfree Galerkin method vol.45, pp.1, 2013, https://doi.org/10.1016/j.compositesb.2012.09.061
- Multi-scale finite element analysis of acoustic waves using global residual-free meshfree enrichments vol.6, pp.2, 2013, https://doi.org/10.12989/imm.2013.6.2.083
- Micromechanical analysis of strain rate-dependent deformation and failure in composite microstructures under dynamic loading conditions vol.32-33, 2012, https://doi.org/10.1016/j.ijplas.2011.10.008
- A meshfree-enriched finite element method for compressible and near-incompressible elasticity vol.90, pp.7, 2012, https://doi.org/10.1002/nme.3349
- Three-dimensional meshfree-enriched finite element formulation for micromechanical hyperelastic modeling of particulate rubber composites vol.91, pp.11, 2012, https://doi.org/10.1002/nme.4306
- Improved Element-Free Galerkin method (IEFG) for solving three-dimensional elasticity problems vol.3, pp.2, 2009, https://doi.org/10.12989/imm.2010.3.2.123