DOI QR코드

DOI QR Code

Efficiency Improvement of Organic Light-emitting Diodes depending on the Thickness Variation of BCP using Electron Transport Layer

전자 수송층 BCP의 두께변환에 따른 유기발광소자 효율 개선

  • 김원종 (광운대학교 전기응용연구실) ;
  • 신현택 (광운대학교 전기응용연구실) ;
  • 홍진웅 (광운대학교 전기응용연구실)
  • Published : 2009.04.01

Abstract

In the devices structure of ITO/N,N'-diphenyl-N,N' bis (3-methylphenyl)-1,1'-biphenyl-4,4'-diamine (TPD) /tris (8-hydroxyquinoline)aluminum$(Alq_3)$electron-transport-layer(ETL)(2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline(BCP))/Al, we have studied the efficiency improvement of organic light-emitting diodes depending on the thickness variation of BCP using electron transport layer. The thickness of TPD and $Alq_3$ was manufactured 40 nm, 60 nm under a base pressure of $5{\times}10^{-6}$ Torr using at thermal evaporation, respectively. The TPD and $Alq_3$ layer were evaporated to be deposition rate of $2.5{\AA}/s$. And the BCP was evaporated to be a4 a deposition of $1.0{\AA}/s$. As the experimental results, we found that the luminous efficiency and the external quantum efficiency of the device is superior to others when thickness of BCP is 5 nm. Also, operating voltage is lowest. Compared to the ones from the devices without BCP layer, the luminous efficiency and the external quantum efficiency were improved by a factor of four hundred ninty and five hundred, respectively. And operating voltage is reduced to about 2 V.

Keywords

References

  1. G. B. Blanchet, Y. L. Loo, J. A. Rogers, F. Gao, and C. R. Fincher, 'Large area, high resolution, dry printing of conducting polymers for organic electronics', Appl. Phys. Lett., Vol. 82, p. 463, 2003 https://doi.org/10.1063/1.1533110
  2. H. Mu, H. Shen, and D. Klotzkin, 'Dependence of film morphology on deposition rate in ITO/TPD/Alq3/Al organic luminescent diodes', Solid-State Electronics, Vol. 48, p. 2085, 2004 https://doi.org/10.1016/j.sse.2004.05.067
  3. W. J. Kim, J. H. Yang, T. Y. Kim, J. Jeong, Y. H. Lee, H. Y. Park, T. W. Kim, and J. W. Hong, 'Efficiency improvement of organic light-emitting diodes depending on thickness of hole injection materials', Trans. EEM, Vol. 6, No. 5, p. 233, 2005 https://doi.org/10.4313/TEEM.2005.6.5.233
  4. Y. H. Lee, W. J. Kim, T. Y. Kim, J. Jeong, H. D. Park, T. W. Kim, and J. W. Hong, 'Electrical characteristics and efficiency of organic light-emitting diodes depending on hole-injection layer', Curr. Appl. Phys., Vol. 7, p. 409, 2007 https://doi.org/10.1016/j.cap.2006.09.021
  5. S. F. Chen and C. W. Wang, 'Influence of the hole injection layer on the luminescent performance of organic light-emitting diodes', Appl. Phys. Lette., Vol. 85, No. 5, p. 765, 2004 https://doi.org/10.1063/1.1775282
  6. S. K. Kim, J. W. Hong, and T. W. Kim, 'Current voltage characteristics of organic light emitting diodes with a variation of temperature', Trans. KIEE., Vol. 51-C-7, 2002
  7. W. J. Kim, Y. H. Lee, J. H. Yang, T. Y. Kim, T. W. Kim, and J. W. Hong, 'Electrical characteristics and luminous efficiency of OLEDs depending on the hole injectioon layer', ME&D-16, p. 85, 2005
  8. D. H. Chung and T. W. Kim, 'Equivalent- circuit analysis of ITO/Alq3/Al organic light-emitting diode', Trans. KIEE, Vol. 8, No. 3, p. 131, 2007
  9. Y. H. Lee, W. J. Kim, T. Y. Kim, T. W. Kim, and J. W. Hong, 'Electrical and optical characteristics of organic light- emitting diodes for various thickness of the PTFE Layer', J. Korean. Phys. Soc., Vol. 51, No. 3, p. 1016, 2007 https://doi.org/10.3938/jkps.51.1016
  10. 김원종, 홍진웅, 'Crucible boat의 홀 크기에 따른 유기발광소자의 효율개선', 전기전자재료학회논문지, 21권, 6호, p. 569, 2008
  11. Y. H. Lee, W. J. Kim, K. S. Cho, T. W. Kim, and J. W. Hong, 'Dependence of the dielectric properties of organic light-emitting diodes with a PTFE hole-injection layer on the applied voltage', J. Korean. Phys. Soc., Vol. 53, No. 3, p. 1460, 2008 https://doi.org/10.3938/jkps.53.1460
  12. Y. Divayana, B. J. Chen, X. W. Sun, and K. S. Sarma, 'Organic light-emitting devices with a hole-blocking layer inserted between the hole-injection layer and hole-transporting layer', Appl. Phys. Lett., Vol. 88, No. 083508, 2008
  13. C. W. Tang and S. A. VanSlyke, 'Organic electroluminescent diodes', Appl. Phys. Lett., Vol. 51, p. 913, 1987 https://doi.org/10.1063/1.98799
  14. C. Qiu, H. Chen, and M. Wong, 'Dependence of the current and power efficiencies of organic light-emitting diode on the thickness of the constituent organic layers', IEEE T Electron Dev., Vol. 48, No. 9, p. 2131, 2001 https://doi.org/10.1109/16.944206
  15. I. D. Parker, 'Device characteristics in polymer light-emitting diodes', J. Appl. Phys., Vol. 75, p. 1656, 1994 https://doi.org/10.1063/1.356350
  16. Y. Qiu and D. Q. Zhang, 'Dependence of the performance of the organic electro luminescent devices upon the deposition rate of organic thin films', Synth. Metals., Vol. 110, p. 241. 2000 https://doi.org/10.1016/S0379-6779(99)00300-8
  17. W. J. Kim, Y. H. Lee, T. Y. Kim, T. W. Kim, and J. W. Hong, 'Dependence of efficiency improvement and operating- voltage reduction of OLEDs on Thickness Variation in the PTFE Hole-injection Layer', J. Korean. Phys. Soc., Vol. 51, No. 3, p. 1007, 2007 https://doi.org/10.3938/jkps.51.1007