Rl Ty g
F14% $3%. 2009. 3. 2009-14-3-1-6

OII

X2RD: XPath& 0|&%& XML H|o|E{e| BAIY Hlo|E{Ho]Az 2]

XEot EHe

r

O_*®
LAE

X2RD: Storing and Querying XML Data Using XPath To
Relational Database

Sangyoon Oh *

O of
4 3

XML2 ¢ 273 gBe| Fo 2 Ae] u gon, 94 Al AueE 4 5o 2¥oz XMLE o 43 Fum
22 % 3 o disEm . iR Hole s #4138 o o A= o] gleea XML
olele] At dojol] AAF dlolEluo] 28 ol gsleE A} A2 FES n 9lom, 13 XPath, XQuery
9 22 XML FE7FEE AskE Mol tigh AJwr} o 2ojx gt B € 718 Ak XML&
TAE wlolEmo)zd] Astn Aelg sl 1250 BHES BA5ta, BAE dlolgluo] A8 o] 4 &)
EF XML A7 2 2o alg Aergct. AQbE whale XML dlo81E 23 (Shred) 3lo) BAE THsH,
XQuery®] 7]20] =& XPathg ©] 438 QueryE SQLE Wglsle] 243k 222 Jhatl B Aor upi2 g olg
k3 Query Processor® 7@3}a 44 RDBMSE A%stn 483 23}, XML tlolEl2 &340 2 RDBMSH) &
HHom Astn AT F e AL FAF 4 At

i
eyl
)
_2:

1

Abstract

XML has become a de facto standard for structured document and data on the Web. An XML, data
deluge over the network will be more, since XML based standards such as Web Service and Semantic
Web gets popular. There are efforts to store and query XML documents in a relational database system
and recent efforts focus on how to provide such operations using XPath and XQuery. In this paper, we
present study about those research efforts and we propose a new scheme to store and query XML
documents in a relational database using XPath query. The scheme uses a ‘shred method to store and
translates XPath queries to SQL. We also present our empirical experiments using a RDBMS.

» Keyword : XML, 2% Hio|ej#|o|A(relational database), XPath &2|(XPath Query)

s HIXMAL : 248

< F30d 1 2009. 2, 25, MAY 2009, 3. 9, AXEEY : 2009. 3. 23.

e FE R AR

* B TR A4ZAY Y AUENATAEAY BHTAFANA DA AFAAR SAHE
(IITA-2009-C1090-0902-0003)

58 WEH FEFREE HLE(2009. 3)

I. INTRODUCTION

XML (eXtensive Markup Language) has become a
de facto standard for structured documents and data on the
Internet (1.2). We are already experiencing an XML data
deluge over the network and there will be more, since XML,
based technologies such as Web service technology get
popular. Web service enables a language and platform
independent communication between distributed services.
Thus, more messages (e.g. S0AP2) | WSDL3Y |, and RDFY!)
on the network are in the form of XML.

In general, there are options to store and guery
XML data. We can store XML data in a flat file
system or Native XML databases such as Xindice of
Apache (3) and Ozone Database [4). Object-oriented
databases can also be used to store and query XML
data. There are advantages and disadvantages to use
each system to store and query XML data. Even
though a flat file system gives us maximum easiness
to store XML data, however it provides us almost no
way to query the XML data. Native XML database has
many advantages including processing complex queries
to large databases, however it seems the performance
and the maturity of the systems are not there yet.

Thus, it becomes more important to store XML
documents in a relational database. This is mainly
because a relational database system has better
performance than native XML databases which store
XML documents in raw format. For such reason,
there are efforts to decompose XML documents into
relations and store XML in a relational database
among major industrial companies and academic
institutes. Those efforts naturally include the efforts
to query to XML contents in a relational database.

In this paper, we propose a new scheme to store
and query XML documents XPath (XML Path
Language) (5] to a relational database. Our proposal

2) Formerly known as Simple Object Access Protocol
3) Web Service Description Language
4) Resource Description Framework

includes two major issues, A proposal of method for
mapping a raw XML document in a relational
database system would be one, and a scheme to
implement XPath queries to the XML data in a
relational database would be the other.

In order to demonstrate the potential of our proposed
scheme, we implement the scheme and it will be
described in the following sections, which focuses on
traversing capability of XPath. We organize this paper
as follows. In section 2, we discuss background works.
In section 3, we present our study about XPath Query
Mapping to store and query XML data on a relational
database. Section 4 shows the implementation for
verifying the proposed scheme. We discuss about the
future work and conclude in section 5.

Il. RELATED WORKS

As we pointed in the previous section, there are
some research efforts to store and query XML
documents in a relational database system (6~9,
15). Researchers have proposed options to store and
query XML documents by shredding them into
relations and translate XML queries into SQL
queries. Options are vary from very simple one
which asks a user input how to store XML elements
in relational tables [10). It is simple and easy,
however it requires human interruptions in the
process and error introduced by human can cause
fatal malfunctions. We discuss three notable works

in following subsections.

1. A simple ad-hoc scheme: Florescu and Kossmann

Florescu and Kossmann (6] analyze no user
input. They scan and parse XML documents one by
one and store all the information into tables on a
relational database. There are assumptions on their
study: first, they process an XML document as of an
ordered and labeled directed graph. Each XML
element is represented by a node in the graph.
Relationships between elements and subelement are

X2RD: XPath® o] &% XML woltle #AF wloleluojnie] A4 2 59

represented by edges in the graph and labeled by the
Values of the XML
documents are represented as leaves in the graph.

name of the subelement.

This approach inspires us in the way they used to
store XML documents by shredding them.

2. Supporting the ordered XML data model

Shanmugasundaram et al. (IBM Almaden RC)
colleagues at IBM
Almaden Research Center show how ordered XML
data model can be efficiently supported by the
relational data model (8]. They proposed three
ordering methods (i.e. Global Order, Local Order,
and Dewey Order) for representing XML order in the
relational data model. The proposal also includes
algorithms to translate an XPath query into a SQL

Shanmugasundaram and

query for each encoding methods. This approach
shredding XML
documents to store and using XPath to query.
However, the focuses of works are different: their
main interest is to show that XML ordered data
model can be efficiently stored and queried using
relational database.

resembles with our work in

Our interest is to show an
alternative option to store and query and verify the
option through implementation.

3. Oracle XML DB: Oracle Database 11g

Oracle XML DB is a feature of Oracle Database 11g (11].
It provides a high-performance. native XML storage and
retrieval technology. It fully absorbs the W3C XML data
model into the Oraclel1g Database, and provides new
standard access methods for navigating and querying XML.
For instance, it supports a new data type, XMLType. This
gives user the flexibility to store XML in a column, in a row,
or as a whole file, like object. Oracle XML DB user can
query to XML in two ways. First, it supports SQL-style
queries, in which users can use XPath notation to “step into’
XML documents. This style of querying, known as
SQL/XML, is being standardized by the SQLX group (12
SQL/XML is an extension to SQL to include processing of
XML data in relational stores. When data is mixed of
structured and semi-structured, SQL/XML is the preferred

way to query. Oraclellg Database also supports XQuery [13],
which is a prototype implementation in Java. XQuery, which
is also known as XML Query in conjunction with XPath, is a
standard way to access pure-XML documents. It is the most
relevant when the data is in XML structure.

Works discussed above provide schemes to store
and query XML documents. In this paper, we propose
and implement yet another one which is simple and

ad-hoc. Section 8 shows our proposed scheme.

lIl. PROPOSED SCHEME

In this section, we describe our proposed scheme
to map an XML DOM into a single ternary relation.
Thus, XML documents in relational database are
stored and queried. We also describe our simple
language to query onto the stored document which is
XPath compatible.

1. Simple Mapping

There are several techniques to map an XML
document in the relational database as we presented
in section 2. We used rather simple form of mapping
by using ternary relationship. In our scheme, XML
DOM is parsed down and each XML element is
gtored as a single ternary relation (i.e. index of the
node, parent, and the name of the node). For
instance, let's map a size 2 document A (Fig 1.).
The parse tree of the document is depicted in Fig 2.

gl 1. Z712ed XML BAM
Fig. 1. A size 2 XML Document A

B a (0)
b (1) b (2)
[—

T8 2. Indexing®l XML £A] A9 E2|
Fig. 2. Parse tree of the Document A with index

60 wEFEEREE WIE2009. 3)

To map a parsed XML DOM tree to a ternary
relation, we introduce a Mapping function P and we
define it as follows:

P:dom -» num X num X string

Thus, if we put input A (i.e. XML Document A) to
the function, it will be

P(A)={<x.index,x.parent_index, x. node name>}x

is a member of DOM}

and the relation is presented in Table 1.

In this mapping, we define all nodes as the same
type to make the mapping process simple. If you
consider the retrieval of an XML document from the
relational database, it is more complex task than
XML
document is another level of challenge, since some

storing and guaranteeing an identical
information can be lost when you store. In this
paper, we focus on to show the alternative scheme to
store and query using XPath. Thus, we believe that

our simple scheme approach is enough.

E 1. XML 2A Ast 2HAIE Hol2
Table 7. XML Docurment A to a relational table

0 g a
1 0 b
2 ¢ b

For the same reason, the attribute of an element
becomes a child node of the element. Also the value of an
element becomes a child. That is and
<a»1234 modified to <a><id><1234></1234></id>
 and <a><1234></1234>, respectively.

2. Query Language

The language we use in our proposed scheme is
subset of the W3C XPath language. We implemented
three XPath axes and a node test. The XPath is

syntax for defining parts of an XML document and it
uses path expression to navigate in XML documents.
We choose to use XPath because XQuery is designed
to query XML data (i.e. SQL for XML data) and
XPath is a major element in it. XQuery and XPath
share the same data model and support the same
functions and operations. Thus, extending our query
language to implement the full XQuery specification
is matter of engineering issue.

Terms in the XPath specification (e.g. children,
parent, descendant, and ancestor) are semantically
shared with XSLP, XQuery and XML and there is no
need to re-define terms for nodes. However, XPath
Axes are not in the XML and needs to be explained.
An axis, which is one of expressions in XPath, is a
node-set to the current node. Examples from the
XPath recommendation of the W3C show how we can
address parts of an XML documents. Examples of

axes with a node test operator are follows:

schildi:*
© selects all element children of the current node
- descendant: :para
© selects the para element descendants of the
current node
rancestor::div
> selects all div ancestors of the current node
Our scheme supports all examples above.
However. we defined axis, and node test symbol
little different W3C
recommendation. We defined P, C, D as a name of
parent axe, a child axe, and a descendant axe, in that order.
And the node test symbol :: from W3C recommendation is
replaced by ;. Thus, our proposed language expression
‘C;para’ is equivalent to the ‘child::para of W3C XPath

recommendation.

syntactically from

X2RD: XPath& ol&g XML dolele] #AE doleisjolazel A3 4o 61

E 2. W3C welnt xiokel ghalel vim
Table 2. Comparison between W3C recommendation
and proposed scheme

¥= 1 o
parent P
child C
descendant D
7 (node test) ; (node test)

IV. EVALUATION

To verify the feasibility, we implement our
proposed scheme with the PostgreSQL relational
database management system (12) which is under
BSD-style license and freeware. In this evaluation,
we made few assumptions to make our problem
domain small enough but not miss any crucial issues
for verification. Our implementation is for per schema. It is
the option which Oracle 8i and Florescu and Kossmann
used in their work. A structure of the XML document is
given by the user before we make a query to the database.
The second assumption we made is that a XPath expression
which user input has no syntactical error in it. And the
third and final assumption is our implementation gives no
node manipulating capability.

1. Components of X2RD

Our implementation, X2RD (XML to Relational
Database), is designed to support the XPath query
an XML document in the
relational database. As listed in table 2, X2RD is
JDBC module,
which is integrated with Java Swing GUI (Graphical
User Interface) and plpgsql function that make a
query to the PostgreSQL RDBMS. In the system,
JDBC (Java Database Connectivity) defines the

interface to the Postgres database

implementation to

consisting of two components -

in order to
provide methods querying and updating data in the
database from GUI.

2. Event flow of X2RD

Events in the X2RD generates from the GUI
(Graphical User Interface) to the Postgre ORDBMS
using JDBC and PostgreSQL. On the GUI, user
inputs a well-formed XPath expression and an
expression is possibly consisting of multiple location
steps. A whole XPath expression is parsed into each
location step and put into the Java Vector object.
The JDBC module integrated with GUI make a
query pl/sql statement for each location step. An
implementation issue we've faced is where we are
going to store intermediate result. X2RD do not
bring the intermediate result into main memory.
Rather, a result of each location step is written back
to the database by pl/sql function. The temp table
is a temporary table where pl/sql functions write an
intermediate result to. Since pl/sql function iterate
through the result (node set) from the previous
stage, we can avoid a possible memory overflow that
can cause by a huge size of intermediate result set.
After the query processing, the final state of ‘temp’
table is displaved on the GUI. The display area in
GUI is a scrollable pane so that there is no missing
data.

In detail, the each axe has a corresponding pl/sql
function, except D (descendant) which has two
designated functions. Each pl/sal program processes
a location step. JDBC class makes queries the
Prepared Statement with a node name to be tested
according to the axes. The descriptions of Java

classes and pl/sql functions are following.

2.1 pl/sql

Except ancestor descendant.sql, all the pl/sdl
functions loops over the previous node set in ‘temp’
table with cursors. They select the node with the
combination of index and parent column value. For
instance, the result set of node for C (Child) axe are
selected by setting ‘where clause as parent = ind and index
() ind where ind is the index of node where the cursor
locate currently. Then, there is going to be a condition more

of ‘where clause to do the node test, such as name = name

62 BEAFEBREE WLE(2009. 3)

of node. In the case of node name *', pl/sql function does
not perform the node test, however returns all node of the

axe result set.

- descendant.sal
: selects descendant of current

context nodes (which are stored in ‘temp table)

function that

and do the node test over selected set of
nodes.
» parent.sal
function that selects parent of current context
nodes (which are stored in ‘temp table) and do
the node test over selected set of nodes.
- child.sal
function that selects child of current context
nodes (which are stored in ‘temp’ table) and do
the node test over selected set of nodes.
+ ancestor_descendant.sal
o function that returns a table that contains the
node. This
function traverse down until function

descendant of given recursive
reaches
down to the leaves of the sub-tree of current

node.

2.2 Client Modules

X2RD client consists of X2RD and User GUI. The
descriptions for each module are as follows:

+ X2RD
this is main module that create user frame
initially. It also manages- all the JDBC issues. It
loads up org.postgresal.Driver and prepares
each statement for the sal call. It provides the
method to initiate ‘temp’ table and to display the
final state of it.

- GUI

o It takes the user inout XPath query and parses it

loops for each

location step processing until the final location

to each of location step. It

step is processed.

APadvquety
Inpt by Uaar
Each Location IDBE method
Siap slorad on s}
ecior valls plogsil
Bl setof
e Loop
Display the result s
set om thelerup S 08 terrip
atie abile

38 3. X2RD OMIE 5&
Fig. 3. Event flow in X2RD

E 3. ALH EA
Table 3. System Environment

CPU 1.6GHz
Memory 1GB

6] Linux Redhat
RDBMS PostgreSQL 8.2

3. Experimental Results

We test X2RD with XML documents with various
size and complexity. All experiments were run on
1.6GHz Intel Centrino duc processor with 1GB
memory running a Linux Redhat operating system.
System environments are summrized in table 3. We
used PostgreSQL version 8.2 for our experiment.
One of test XML data, students.xml
figure 4. It is mapped into a single table as shown in

is shown in

figure 5 by using the mapping rule we've proposed in
section 3.1. For mapping, we used our proposed
mapping function, which “shreds’” XML documents
(i.e. student.xml).
which has one location step expression to level 3.
The test queries are shown in table 4. The X2RD
query processor visits each location step and sends
SQL queries to the RDBMS to get all the right set of
node to axes and node test from the table.

The test cases are from level 1,

X2RD: XPathg o] €& XML deolee #AE doleiwolaze A%y 29 63

E 4. HAE F2|
Table 4. Tested Queries

c*

D.*
Difirst
Cistudent

Level 1

Cistudent/C:*
Level 2 Cistudent/D:John
Diname/P:*

Cistudent/D:CrsCode/C: CS308

Level 3
eve C:student/D:CrsCode/P:*

Level 4 C:student/D:CrsCode/P:*/C: Semester

2l 4. HAER students.xml with xviewer
Fig. 4. test XML (students.xml) with xviewer

@ GB. DB IDE e @ vam

2] 6. ofgE BAE XML
Fig. 5. Mapped XML in a relational table

£] ness Py

% 6. X2RD2| ALEA} QlEfHo|A
Fig. 8. User Interface of X2RD

V. CONCLUSION

Storing and querying XML documents in a
relational database become increasingly important
because XML is everywhere in these days. As Web
service technology and Semantic Web get popular,
more and more XML data will be around on the Web
and there are many efforts from research institutes
and venders (including IBM, MS SQL, ORACLE,
and MySQL) who put efforts on supporting XML
data.

This paper has addressed some key issues to store
and query XML data in a relational database
including shredding XML to relations, providing
mapping functions, and implementing a query
processor to translate XPath expression into SQL
query on the relational database.

In this paper, our primary goal is to propose an
alternative option to store and query XML and we
show that XML documents can be efficiently
supported by a relational database. Our scheme is
simple: however it supports most of issues in
storing/querying XML documents in RDBMS except
reconstructing and guaranteeing an identical XML
document. Supporting a full set of XPath syntax is
also a work will be done in the future.

In order to verify the potential of our proposed
scheme, we implement it using general RDMBS (i.e.
PostgreSQL) and our implementation, X2RD

64 BEAFEHIBEREE WE(2009. 3)

successfully performs XPath axes operation and
others on XML documents stored in the RDBMS.
Empirical results show that our scheme can be

efficiently implemented.

REFERENCE

(1) &d, ZxE, YAE #4293 Set-Top
Box 7|8t TV-Anytime #Eltlo]8 &), 3=
AFHAREI =8, 4138 A43, 200893

(2) 5o wds "HAF dolEuo] A Aut %%

(3] The Apache XML Project, Apache Xindice,
http://xml.apache.org/xindice/

(4) The Ozone Database Project, ozone,
http://www.ozone~db.org/frames/home/what . html

(5) The World Wide Web Consortium (W3C),
‘XML Path Language (XPath) version 1.0,
W3C Recommendation, Nov. 1999.

(6) D. Florescu and D. Kossmann, “Storing and
Querying XML Data using an RDBMS,”
IEEE Data Engineering Bulletin, Vol. 22,
No. 1, pp. 27-34, Mar. 1999.

(7] A. Deutsch, M. Fernandez, and D. Suciu,
“Storing semistructured data with
STORED,” ACM SIGMOD International
Conference on Management of Data, pp.
431-442, Philadelphia,
USA, June 1999.

(8) 1. Tatarinov et al., “Storing and Querying
Ordered XML Using a Relational Database

ACM SIGMOD International
Conference on Management of Data,
Madison, pp. 204-215, Wisconsin, USA,
June 2002.

(9) M. Rys, XML and relational database management

inside Microsoft® SQL ServerTM

Pennsylvania,

System,”

system:

2005," ACM SIGMOD International
Conference on Management of Data, pp.
958-962, Baltimore, Maryland, USA, June
2005.

(10) Oracle Corporation, ORACLE 8i Database,
http.//tahiti.oracle.conypls/tahiti/tahiti. homepage.

(11) Oracle Corporation, ORACLE Database 11g,
http://www.oracle.com/technology/products/
database/oraclellg/index. html.

12) SQLX Group, SQLX, http://sqlx.org/

(13) XML Query Working Group of The W3C,
"XQuery 1.0 An XML Query Language,”
W3C Recommendation, Jan. 2007.

(14) PostgreSQL Global Development Group,

PostgreSQL. http://www.postgresql.org

bR, WS "¢HF XML FIZAA AN &

ARG 7Y, FEAFER LS

(15]

39l 2]

)
Ez3ee
=24 ALLE A5, 20069 11€.

2 A & (Sangyoon Oh)

20061 =} icjeluicy

Computer Science ¥k

2006~ 2007 SK @&

2008~ A olFThek HBEIe

HRAFEFN 2uF

FalBol /84 Al2El, SOA,

Ad-hoc/P2P Al2H]

