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Abstract
In this paper, we consider Jarque-Bera (JB) normality test for the innovations of

ARMA-GARCH models. In financial applications, JB test based on the residuals are
routinely used for the normality of ARMA-GARCH innovations without a justification.
However, the validity of JB test should be justified in advance of the actual practice
(Lee et al., 2009). Through the simulation study, it is found that the validity of JB
test depends on the shape of test statistic. Specifically, when the constant term is
involved in ARMA model, a certain type of residual based JB test produces severe size
distortions.
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1. Introduction

The autoregressive moving average (ARMA) models for the conditional mean with the
generalized autoregressive conditional heteroscedastic (GARCH) models for the conditional
variance have gained popularity in the analysis of financial time series data. In actual ap-
plications, it is common to put the normal assumption on the innovation random variables
of ARMA-GARCH models (Park and Lee, 2007). However, the normality assumption on
innovations has been frequently violated in the real data analysis. Therefore, the validity
of the normality assumption should be examined before modeling financial time series data
with ARMA-GARCH models. For this reason, the normality test for the ARMA-GARCH
innovations has been paid much attention and several test procedures are intensively studied
in the past decades.

Among the existing normality tests, we focus on the Jarque-Bera (JB) test since it has
been well known to have merits of being simple and producing good powers compared to
others such as the Kolmogorov-Smirnov and Bickel-Rosenblatt (Bickel and Rosenblatt, 1973)
tests. In the literature, two most popular types of JB test are defined as follow:

ST = T (τ̂2/6 + (κ̂− 3)2/24) and S̃T = T (τ̃2/6 + (κ̃− 3)2/24), (1.1)
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Here, ST can be obtained in the construction of S̃T by the replacement of ε̄ and σ̃2 with 0
and 1 , respectively. Such a replacement may be acceptable if

ε̄ → 0 and σ̃2 → 1 (1.4)

in probability. Under the assumption that εt ’s are either IID Gaussian random variables
(Jarque and Bera, 1980; Bera and Jarque, 1981) or weakly dependent data (cf. Bai and
Ng, 2005) with E(εt) = 0 and E(ε2t ) = 1 , the asymptotic results in (1.4) are satisfied and
consequently, it can be shown that both ST and S̃T are asymptotically distributed as χ2

distribution with 2 degrees of freedom ( χ2
2 ). For concerning the JB normality test for the

innovations of heteroskedastic model, we refer to Chen and Kuan (2003), Fiorentini, Sentana
and Calzolari (2004), Kulperger and Yu (2005), Lee and Ha (2007) and Lee et al. (2009)
and the papers cited in those articles. Note that Chen and Kuan (2003) can be obtained at
http://www.econ.sinica.edu.tw/upload/file/03-a003.2008090211040515.pdf.

In financial applications of testing the normality of innovations in ARMA-GARCH models,
JB test statistics ST and S̃T based on the residuals are routinely used, since the asymptotic
distribution of the test statistics under the null hypothesis is expected to achieve χ2

2 distri-
bution. However, the limiting distribution of ST for innovations of some volatility models is
not always χ2

2 distribution. Therefore, the validity of JB test should be justified in advance
of the actual practice. For instance, Chen and Kuan (2003) considers ST based on the resid-
uals for the innovations of AR-ARCH models and showed that ST is not valid and produces
severe size distortions. In order to overcome this defect, they proposed the modified JB
test. Recently, some authors reported that unlike S̃T , residual based test statistic ST for
the normality of GARCH innovations suffers from severe size distortions (Kulperger and Yu,
2005; Lee et al., 2009).

In this paper, our goal is to investigate the validity of two popular types of JB test statistics
ST and S̃T based on the residuals for the normality of ARMA-GARCH innovations. This
is not a trivial extension, since the residual based tests behave differently, depending on
the structure of the time series models (Chen and Kuan, 2003; Lee et al., 2009). Through
simulation studies, it is shown that the size of JB test depends on the shape of test statistic.
Specifically, when the constant term is involved in ARMA model, residual based test statistic
SrT (cf. (2.1) below) does produce size distortions, which is not true for S̃rT (cf. (2.1) below).
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2. JB test for ARMA-GARCH innovations

Consider the ARMA(m,s)-GARCH(p,q) models:

rt = φ0 +
m∑
i=1

φirt−i + at +
s∑
j=1

θjat−j , at = εt
√
ht,

ht = ω +
q∑

k=1

αka
2
t−k +

p∑
l=1

βlht−l.

where φi, θj ∈ R, 1 ≤ i ≤ m, 1 ≤ j ≤ s, ω > 0, αk ≥ 0, 1 ≤ k ≤ q, βl ≥ 0, 1 ≤ l ≤ p and the in-
novations εt are IID random variables with E(εt) = 0 and E(ε2t ) = 1.

In this section. we consider the problem of testing the following hypotheses:
H0 : εt ’s are normally distributed. vs.
H1 : Not H0 .
To construct JB test statistics, we employ the quasi maximum likelihood estimators

θ̂T = (φ̂, θ̂, ω̂, α̂, β̂)′ (Francq and Zakoian, 2004) and obtain the residuals as follows:

ε̃t =
rt − µ̃t√

h̃t
, t = 1, . . . , T ,

where µ̃t ’s and h̃t ’s are defined recursively by using

µ̃t = φ̂0 +
m∑
i=1

φ̂irt−i +
s∑
j=1

θ̂j ãt−j , h̃t = ω̂ +
q∑

k=1

α̂kã
2
t−k +

p∑
l=1

β̂lh̃t−l, ãt = rt − µ̃t

and the initial random variables for r0, · · · , r1−(q−s)−m , ã0, · · · , ã1−max(s,q) , h̃0, · · · , h̃1−p
are chosen to be fixed (Francq and Zakoian, 2004). Using those residuals and taking the
form of JB test statistics ST and S̃T in (1.1), we define

SrT = T (τ̂2
r /6 + (κ̂r − 3)2/24) and S̃rT = T (τ̃2

r /6 + (κ̃r − 3)2/24), (2.1)

where τ̂r , κ̂r , τ̃r , and κ̃r are obtained by replacing true innovations εt in (1.2) and (1.3)
with residuals ε̃t . This is simply because εt is not observable as in many other times series
analysis. Under H0 , it is expected that the limiting distributions of SrT and S̃rT are χ2

2

distribution, which is identical to those of ST and S̃T based on true innovations. Then, we
reject H0 if ST > Cα or S̃T > Cα , where the critical value Cα is the (1−α) -quantile point
of χ2

2 distribution.

3. Simulation study

In this section, we evaluate the validity and performance of SrT and S̃rT through a simulation
study. The empirical sizes and powers are calculated at the nominal level 0.05 in both cases.
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We consider ARMA(1,1)-GARCH(1,1) models as follows:

rt = φ0 + φ1rt−1 + at + θat−1, at = εt
√
ht

ht = ω + αa2
t−1 + βht−1

Table 3.1 Empirical sizes of S̃r
T and Sr

T with φ0 = 0.0

φ1 = 0.2 φ1 = −0.2
θ = 0.2 θ = −0.2 θ = 0.2 θ = −0.2

ω = 0.1 ω = 0.1 ω = 0.1 ω = 0.1 ω = 0.1 ω = 0.1 ω = 0.1 ω = 0.1
α = 0.3 α = 0.1 α = 0.3 α = 0.1 α = 0.3 α = 0.1 α = 0.3 α = 0.1

n β = 0.3 β = 0.8 β = 0.3 β = 0.8 β = 0.3 β = 0.8 β = 0.3 β = 0.8
500 0.041 0.044 0.049 0.044 0.036 0.042 0.040 0.047

S̃r
T 1000 0.040 0.043 0.045 0.046 0.041 0.051 0.047 0.051

2000 0.044 0.056 0.039 0.045 0.052 0.048 0.054 0.050
500 0.162 0.161 0.159 0.162 0.165 0.164 0.162 0.179

Sr
T 1000 0.152 0.170 0.158 0.172 0.173 0.177 0.165 0.171

2000 0.144 0.172 0.172 0.181 0.191 0.173 0.175 0.190

Table 3.2 Empirical sizes of S̃r
T and Sr

T with φ0 = 0.2

φ1 = 0.2 φ1 = −0.2
θ = 0.2 θ = −0.2 θ = 0.2 θ = −0.2

ω = 0.1 ω = 0.1 ω = 0.1 ω = 0.1 ω = 0.1 ω = 0.1 ω = 0.1 ω = 0.1
α = 0.3 α = 0.1 α = 0.3 α = 0.1 α = 0.3 α = 0.1 α = 0.3 α = 0.1

n β = 0.3 β = 0.8 β = 0.3 β = 0.8 β = 0.3 β = 0.8 β = 0.3 β = 0.8
500 0.044 0.038 0.041 0.064 0.037 0.047 0.057 0.048

S̃r
T 1000 0.045 0.054 0.045 0.058 0.052 0.046 0.058 0.054

2000 0.045 0.049 0.064 0.047 0.039 0.059 0.052 0.047
500 0.056 0.039 0.041 0.068 0.046 0.052 0.061 0.046

Sr
T 1000 0.055 0.055 0.056 0.064 0.060 0.055 0.068 0.052

2000 0.057 0.052 0.071 0.054 0.046 0.062 0.056 0.049

For obtaining empirical sizes and powers, sets of 500, 1000 and 2000 observations are gener-
ated from ARMA(1,1)-GARCH(1,1) models with φ0 = 0.0, 0.2, φ1 = 0.2,−0.2, θ = 0.2,−0.2
(ω, α, β) = (0.1, 0.3, 0.3) , (0.1, 0.1, 0.8) . In this simulation, 1000 initial observations are
discarded to remove initialization effects. In order to observe the power, we consider two al-
ternative hypothesis under which the error distribution is assumed to be either more skewed
or heavy-tailed than the normal distribution, viz.,

(a) The t -distribution with 10 degrees of freedom;
(b) The skewed t -distribution with 10 degrees of freedom and shape parameter 1;
The skewness of the distribution increases as the shape parameter increases (Gupta, 2003).

Further, the mean and variance are set to be 0 and 1, respectively for all the cases.
The figures in Tables 1-6 indicate the proportion of the number of rejections of the null

hypothesis H0 out of 1000 repetitions. From Table 1, we can observe that
ST

r produces severe size distortion when φ0 = 0.0 : for example, the empirical sizes of
ST

r are mostly between 0.15 and 0.20 much larger than the nominal level 0.05. This can be
considered the strong evidence against the validity of ST r . However, it can be seen that the
empirical sizes of S̃T

r
still remain very close to 0.05. On the contrary, the figures in Table
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Table 3.3 Empirical powers of S̃r
T and Sr

T for (a) with φ0 = 0.0

φ1 = 0.2 φ1 = −0.2
θ = 0.2 θ = −0.2 θ = 0.2 θ = −0.2

ω = 0.1 ω = 0.1 ω = 0.1 ω = 0.1 ω = 0.1 ω = 0.1 ω = 0.1 ω = 0.1
α = 0.3 α = 0.1 α = 0.3 α = 0.1 α = 0.3 α = 0.1 α = 0.3 α = 0.1

n β = 0.3 β = 0.8 β = 0.3 β = 0.8 β = 0.3 β = 0.8 β = 0.3 β = 0.8
500 0.709 0.716 0.715 0.689 0.716 0.688 0.685 0.700

S̃r
T 1000 0.937 0.925 0.931 0.927 0.919 0.921 0.925 0.929

2000 0.995 0.996 0.997 0.995 0.998 0.998 0.998 0.996
500 0.773 0.733 0.769 0.732 0.762 0.728 0.737 0.728

Sr
T 1000 0.940 0.931 0.945 0.927 0.934 0.938 0.938 0.941

2000 0.996 0.997 0.998 0.996 0.999 0.998 0.998 0.999

Table 3.4 Empirical powers of S̃r
T and Sr

T for (a) with φ0 = 0.2

φ1 = 0.2 φ1 = −0.2
θ = 0.2 θ = −0.2 θ = 0.2 θ = −0.2

ω = 0.1 ω = 0.1 ω = 0.1 ω = 0.1 ω = 0.1 ω = 0.1 ω = 0.1 ω = 0.1
α = 0.3 α = 0.1 α = 0.3 α = 0.1 α = 0.3 α = 0.1 α = 0.3 α = 0.1

n β = 0.3 β = 0.8 β = 0.3 β = 0.8 β = 0.3 β = 0.8 β = 0.3 β = 0.8
500 0.701 0.709 0.689 0.683 0.710 0.719 0.704 0.704

S̃r
T 1000 0.922 0.933 0.928 0.936 0.927 0.941 0.923 0.918

2000 0.994 0.997 0.998 0.995 0.999 0.997 0.998 0.998
500 0.688 0.658 0.688 0.667 0.703 0.687 0.700 0.670

Sr
T 1000 0.916 0.925 0.923 0.924 0.926 0.927 0.917 0.903

2000 0.994 0.996 0.998 0.995 0.998 0.997 0.998 0.996

Table 3.5 Empirical powers of S̃r
T and Sr

T for (b) when φ0 = 0.0

φ1 = 0.2 φ1 = −0.2
θ = 0.2 θ = −0.2 θ = 0.2 θ = −0.2

ω = 0.1 ω = 0.1 ω = 0.1 ω = 0.1 ω = 0.1 ω = 0.1 ω = 0.1 ω = 0.1
α = 0.3 α = 0.1 α = 0.3 α = 0.1 α = 0.3 α = 0.1 α = 0.3 α = 0.1

n β = 0.3 β = 0.8 β = 0.3 β = 0.8 β = 0.3 β = 0.8 β = 0.3 β = 0.8
500 0.907 0.899 0.916 0.902 0.905 0.904 0.929 0.901

S̃T 1000 0.993 0.997 0.993 0.996 0.998 0.998 0.999 0.993
2000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
500 0.897 0.870 0.892 0.874 0.877 0.879 0.895 0.870

ST 1000 0.985 0.991 0.983 0.986 0.989 0.985 0.994 0.987
2000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2 indicate that the abovementioned phenomenon disappears when φ0 = 0.2 . In this case,
both ST r and S̃T

r
can be safely applicable. Tables 3-6 show that both S̃T

r
and ST r produce

good powers, and the power in all cases increases to 1 as n increases. Furthermore, it can
be seen that the empirical sized and the powers are not affected by the parameter values for
all the cases. From our findings, it is strongly suggested that the usage of S̃T

r
should be

preferred to test the normality for ARMA-GARCH innovations when the constant term is
involved in ARMA model. Since our conclusion is based only on the simulation study, it is
required to provide a theoretical justification. We leave this as a future task.
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Table 3.6 Empirical powers of S̃r
T and Sr

T for (b) when φ0 = 0.2

φ1 = 0.2 φ1 = −0.2
θ = 0.2 θ = −0.2 θ = 0.2 θ = −0.2

ω = 0.1 ω = 0.1 ω = 0.1 ω = 0.1 ω = 0.1 ω = 0.1 ω = 0.1 ω = 0.1
α = 0.3 α = 0.1 α = 0.3 α = 0.1 α = 0.3 α = 0.1 α = 0.3 α = 0.1

n β = 0.3 β = 0.8 β = 0.3 β = 0.8 β = 0.3 β = 0.8 β = 0.3 β = 0.8
500 0.910 0.913 0.897 0.916 0.908 0.895 0.921 0.903

S̃T 1000 0.993 0.992 0.993 0.991 0.998 0.996 0.995 0.992
2000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
500 0.906 0.904 0.896 0.908 0.912 0.896 0.924 0.892

ST 1000 0.993 0.992 0.992 0.991 0.997 0.993 0.994 0.989
2000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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