DOI QR코드

DOI QR Code

A Simple Method Using a Topography Correction Coefficient for Estimating Daily Distribution of Solar Irradiance in Complex Terrain

지형보정계수를 이용한 복잡지형의 일 적산일사량 분포 추정

  • Yun, Jin-I. (Department of Ecosystem Engineering, Kyung Hee University)
  • Published : 2009.03.30

Abstract

Accurate solar radiation data are critical to evaluate major physiological responses of plants. For most upland crops and orchard plants growing in complex terrain, however, it is not easy for farmers or agronomists to access solar irradiance data. Here we suggest a simple method using a sun-slope geometry based topographical coefficient to estimate daily solar irradiance on any sloping surfaces from global solar radiation measured at a nearby weather station. An hourly solar irradiance ratio ($W_i$) between sloping and horizontal surface is defined as multiplication of the relative solar intensity($k_i$) and the slope irradiance ratio($r_i$) at an hourly interval. The $k_i$ is the ratio of hourly solar radiation to the 24 hour cumulative radiation on a horizontal surface under clear sky conditions. The $r_i$ is the ratio of clear sky radiation on a given slope to that on a horizontal reference. Daily coefficient for slope correction is simply the sum of $W_i$ on each date. We calculated daily solar irradiance at 8 side slope locations circumventing a cone-shaped parasitic volcano(c.a., 570m diameter for the bottom circle and 90m bottom-to-top height) by multiplying these coefficients to the global solar radiation measured horizontally. Comparison with the measured slope irradiance from April 2007 to March 2008 resulted in the root mean square error(RMSE) of $1.61MJ\;m^{-2}$ for the whole period but the RMSE for April to October(i.e., major cropping season in Korea) was much lower and satisfied the 5% error tolerance for radiation measurement. The RMSE was smallest in October regardless of slope aspect, and the aspect dependent variation of RMSE was greatest in November. Annual variation in RMSE was greatest on north and south facing slopes, followed by southwest, southeast, and northwest slopes in decreasing order. Once the coefficients are prepared, global solar radiation data from nearby stations can be easily converted to the solar irradiance map at landscape scales with the operational reliability in cropping season.

기상대에서 측정한 '일적산수평면일사량'을 토대로 임의 경사면 상의 '일적산경사면일사량'을 비교적 정확하고 간편하게 알아낼 수 있는 지형보정계수를 고안하였다. 주어진 시간대의 수평면 청천일사량에 대한 경사면 청천일사량의 비율을 '매시일사보정계수'라 정의하고, 청천일사량을 기준으로 수평면의 시간대별 상대 일사강도와 수평면에 대한 경사면의 일사수광비율의 곱으로 표현하였다. 매시일사보정계수를 하루 단위로 적산한 것이 해당 날짜의 지형보정계수이다. 제주도 내 기생화산 '높은오름'의 등고도면 8 방위에서 사면일사수광량을 1년간 관측하는 한편, 이들 지점의 일사량을 지형보정계수에 의해 추정하여 서로 비교하였다. 지형보정계수에 의한 일사추정값의 편차평방근오차는 연평균 $1.61MJ\;m^{-2}$ 이었으나, 4월부터 10월 사이 영농기간에는 절반 이하로 줄어들었다. 경사향에 무관하게 10월에 가장 오차가 작은 반면, 11월에는 경사향에 따른 오차의 변동폭이 가장 컸다. RMSE 값의 연중변동폭은 남향과 북향사면에서 가장 컸고, 남서-남동-북서사면 순으로 줄어들었다. 어떤 경사면이든 365일 동안의 지형보정계수를 한번만 계산해 두면 인근 기상대에서 관측한 임의 날짜의 전천일사량에 이 계수를 적용함으로써 그 날의 적산일사량을 실용적인 오차범위 내에서 추정할 수 있어 복잡지형의 일사수광량 분포를 용이하게 파악할 수 있다.

Keywords

References

  1. Gates, D. M., 1980: Biophysical Ecology. Springer-Verlag, New York
  2. Kondratyev, K. Y. and M. P. Federova, 1977: Radiation Regime of Inclined Slopes. WMO Technical Note No. 152
  3. Korea Meteorological Administration, 2001: Climatological Normals of Korea (1971-2000). Government Publication Number 11-1360000-000077-14

Cited by

  1. Feasibility of the Lapse Rate Prediction at an Hourly Time Interval vol.18, pp.1, 2016, https://doi.org/10.5532/KJAFM.2016.18.1.55
  2. Productivity and cost of a small-scale cable yarder in an uphill and downhill area: a case study in South Korea vol.14, pp.1, 2018, https://doi.org/10.1080/21580103.2017.1409662
  3. A new approach to estimate the spatial distribution of solar radiation using topographic factor and sunshine duration in South Korea vol.101, 2015, https://doi.org/10.1016/j.enconman.2015.04.021
  4. Applicability of Daily Solar Radiation Estimated by Mountain Microclimate Simulation Model (MT-CLIM) in Korea vol.14, pp.4, 2012, https://doi.org/10.5532/KJAFM.2012.14.4.260
  5. Characteristics of Springtime Temperature Within Mt. Youngmun Valley vol.16, pp.1, 2014, https://doi.org/10.5532/KJAFM.2014.16.1.39
  6. Distribution of Midday Air Temperature and the Solar Irradiance Over Sloping Surfaces under Cloudless Condition vol.15, pp.4, 2013, https://doi.org/10.5532/KJAFM.2013.15.4.291
  7. Downscaling of Sunshine Duration for a Complex Terrain Based on the Shaded Relief Image and the Sky Condition vol.18, pp.4, 2016, https://doi.org/10.5532/KJAFM.2016.18.4.233
  8. Agrometeorological Early Warning System: A Service Infrastructure for Climate-Smart Agriculture vol.16, pp.4, 2014, https://doi.org/10.5532/KJAFM.2014.16.4.403
  9. Estimation of Solar Radiation Distribution Considering the Topographic Conditions at Jeju Island vol.55, pp.1, 2013, https://doi.org/10.5389/KSAE.2013.55.1.039
  10. Exploring NDVI Gradient Varying Across Landform and Solar Intensity using GWR: a Case Study of Mt. Geumgang in North Korea vol.21, pp.4, 2013, https://doi.org/10.7319/kogsis.2013.21.4.073
  11. User-specific Agrometeorological Service to Local Farming Community: A Case Study vol.15, pp.4, 2013, https://doi.org/10.5532/KJAFM.2013.15.4.320
  12. Improving the Usage of the Korea Meteorological Administration's Digital Forecasts in Agriculture: IV. Estimation of Daily Sunshine Duration and Solar Radiation Based on 'Sky Condition' Product vol.17, pp.4, 2015, https://doi.org/10.5532/KJAFM.2015.17.4.281