Concentration of Functional Mineral by NF/RO Processes

나노여과/역삼투 공정을 이용한 기능성 미네랄의 농축

  • Lee, Ho-Won (Department of Chemical and Biological Engineering, Jeju National University) ;
  • Moon, Soo-Hyoung (Jeju Special Self-Governing Province Development Co.) ;
  • Ko, Kyoung-Soo (Jeju Special Self-Governing Province Development Co.)
  • 이호원 (제주대학교 생명화학공학과) ;
  • 문수형 (제주특별자치도 개발공사) ;
  • 고경수 (제주특별자치도 개발공사)
  • Published : 2009.12.30

Abstract

In order to select the most suitable membrane to the concentration of vanadium and silica in groundwater, two different commercial NF membrane modules (NE2540-90 and NF90-2540) and three different commercial RO membrane modules (BW30-2540, RE2540-TE, and XLE-2540) were tested. The membrane characteristics test results showed that NE2540-90 module was the most efficient because of higher permeate flux and similar rejection coefficient. Using NE2540-90 module at the transmembrane pressure of $8\;kgf/cm^2$, it was found that the rejection coefficients of vanadium, silica, aluminium, chromium, iron, boron, strontium, and barium were 98.2%, 99.0%, 92.0%, 83.6%, 96.0%, 45.1%, 98.6%, and 69.5%, respectively. It was possible that vanadium and silica contents of groundwater were concentrated into $148.9\;{\mu}g/L$ and 85.8 mg/L respectively by six-stages NF process at the recovery ratio of 15%. The waters produced by NF, which are enriched in vanadium and silica content, are expected to be commercialized the various functional mineral waters.

지하수 중의 바나듐 및 실리카의 농축에 적합한 막을 선정하기 위하여 2종류의 나노여과 막모듈(NE2540-90, NF90-2540)과 3종류의 역삼투 막모듈(BW30-2540, RE2540-TE 및 XLE-2540)에 대한 투과선속과 배제율을 측정하였다. 투과선속과 배제율에 대한 실험 결과 본 연구에 사용된 나노여과 막모듈과 역삼투 막모듈 중에서 NE2540-90 막모듈이 바나듐과 실리카의 농축에 가장 적합하였다. NE2540-90 막모듈을 사용하여 막간차압을 $8\;kgf/cm^2$로 하였을 때, 바나듐 및 실리카의 배제율은 각각 98.2% 및 99.0%이였고, 알루미늄, 크롬, 철, 붕소, 스트론튬 및 바륨에 대한 배제율은 각각 92.0%, 83.6%, 96.0%, 45.1%, 98.6% 및 69.5%이였다. 서귀포지역 지하수를 각각 회수율 15%로 6단 처리하였을 때, 바나듐과 실리카 함량은 각각 $148.9\;{\mu}g/L$ 및 85.8 mg/L로 농축되었다. 나노여과 공정에 의한 농축수는 고농도의 바나듐과 실리카를 함유하고 있어 기능성음료로의 상품개발이 가능할 것으로 판단된다.

Keywords

References

  1. T. H. Kim, JEJUILBO, 3, 2008. 3. 21
  2. Y. G. Lim, 'A Study on Investigation and Merchandising of Functional Mineral Water', pp. 6-25, Jeju Reginal Environmental Technology Development Center (2006)
  3. S. H. Moon, H. W. Lee, and K. S. Ko, 'Concentration of Vanadium in Jeju Groundwater Using Reverse Osmosis Processes', Membrane Journal, 18(3), 241 (2008)
  4. L. Shibuichi, M. Yasue, K. Kato, and Y. Watanabe, 'Consideration on the effects of natural water containing vanadium on diabetic mellitus', Biomed Res Trace Elements, 17(1), 11 (2006)
  5. G. Y. Yeh, D. M. Eisenberg, T. J. Kaptchuk, and R. S, Phillips, 'Systematic review of herbs and dietary supplements for glycemic control in diabetes,' Diabetes Care, 26(4), 1277 (2003) https://doi.org/10.2337/diacare.26.4.1277
  6. A. B. Goldfine, D. C. Simonson, F. Folli, M. E. Patti, and C. R. Kahn, 'In vivo and in vitro studies of vanadate in human and rodent diabetes mellitus', Mol. Cell Biochem., 153, 217 (1995) https://doi.org/10.1007/BF01075941
  7. T. Kitta, S. Yamada, K. Ishihara, N. Watanabe, H. Ishiyama, and Y. Watanabe, 'Effect of natural vanadium contained Mt. Fuji underground water on human hyperglycemia,' Phamacometrics, 64(5), 77 (2003)
  8. H. Sakurai, H. Yasui, and Y. Adachi, 'The therapeutic potential of insulin-mimetic vanadium complexes', Expert Aoapin Investing Drugs, 12(7), 1189 (2003) https://doi.org/10.1517/13543784.12.7.1189
  9. W. Ding, T. Hasegawa, H. Hosaka, and D. Peng, 'Effect of long-term treatment with vanadate in drinking water on KK mice with genetic non-insulin- dependent diabetes mellitus,' Biol. Trace. Elem. Res., 80(2), 159 (2001) https://doi.org/10.1385/BTER:80:2:159
  10. G. G. Sophie, A. Sandrine, N. Fatemeh, L. G. Viviane, G. H$\acute{e}$l$\grave{e}$ne, and V. Bruno, 'Cognitive impairment and composition of drinking water in women: findings of the EPIDOS Study,' American Journal of Clinical Nutrition, 81(4), 897 (2005)
  11. M. Calomme, and D. A. Vanden Berghe, 'Supplementation of calves with stabilized orthosilicic acid. Effect on the Si, Ca, Mg, and P concentrations in serum and the collagen concentration in skin and cartilage,' Biol. Trace. Elem. Res., 56, 153 (1997) https://doi.org/10.1007/BF02785389
  12. E. M. Carlisle, 'Silicon as an essential trace element in animal nutrition,' Silicon biochemistry, Eds. D. Evered and M. O'Connor, pp. 123, John Wiley & Sons Ltd., Chichester, United Kingdom (1986)
  13. M. Hott, C. De Pollak, D. Modrowski, and P. J. Marie, 'Short-term effects of organic silicon on trabecular bone in mature ovariectomized rats,' Calcif. Tissue Int., 53, 174 (1993) https://doi.org/10.1007/BF01321834
  14. J. E. Hwang, J. Jegal, J. Mo, and J. Kim, 'Nanofiltration of Dyeing Wastewater Using Polyamide RO-Membrane', Membrane Journal, 7(1), 58 (2005)
  15. S. W. Hong, 'Effects of Substrates on Nanofiltration Characteristics of Polyelectrolyte Membranes', Membrane Journal, 18(2), 185 (2008)
  16. J. Redondo, M. Busch, and J. D. Witte, 'Boron removal from seawater using FILMTECTM high rejection membranes', Desalination, 156, 229 (2003) https://doi.org/10.1016/S0011-9164(03)00345-X
  17. G. Georghiou and L. Pashalidis, 'Boron in groundwaters of Nicosia (Cyprus) and its treatment by reverse osmosis', Desalination, 215, 104 (2007) https://doi.org/10.1016/j.desal.2006.10.029