DOI QR코드

DOI QR Code

Evaluation of Uncertainty Importance Measure by Experimental Method in Fault Tree Analysis

결점나무 분석에서 실험적 방법을 이용한 불확실성 중요도 측도의 평가

  • Published : 2009.12.30

Abstract

In a fault tree analysis, an uncertainty importance measure is often used to assess how much uncertainty of the top event probability (Q) is attributable to the uncertainty of a basic event probability ($q_i$), and thus, to identify those basic events whose uncertainties need to be reduced to effectively reduce the uncertainty of Q. For evaluating the measures suggested by many authors which assess a percentage change in the variance V of Q with respect to unit percentage change in the variance $\upsilon_i$ of $q_i$, V and ${\partial}V/{\partial}{\upsilon}_i$ need to be estimated analytically or by Monte Carlo simulation. However, it is very complicated to analytically compute V and ${\partial}V/{\partial}{\upsilon}_i$ for large-sized fault trees, and difficult to estimate them in a robust manner by Monte Carlo simulation. In this paper, we propose a method for experimentally evaluating the measure using a Taguchi orthogonal array. The proposed method is very computationally efficient compared to the method based on Monte Carlo simulation, and provides a stable uncertainty importance of each basic event.

결점나무 분석에서 불확실설 중요도 측도는 basic event 확률 ($q_i$)의 불확실성이 top event 확률 (Q)의 불확실성에 얼마나 많이 기여하는지를 나타내는 측도로서, top event 확률의 불확실성을 감소시키기 위하여 어떤 basic event 확률의 불확실성을 감소시키는 것이 효과적인지를 밝히는데 사용된다. $q_i$의 분산 $\upsilon_i$가 백분율 단위로 한 단위 변화될 때 Q의 분산 V의 변화량을 평가하는 측도가 불확실성 중요도 측도로서 많은 저자들에 의해 제안되었으며, 이 측도를 계산하기 위해서는 V와 ${\partial}V/{\partial}{\upsilon}_i$를 해석적인 방법이나 몬테칼로 시뮬레이션을 사용하여 계산해야 한다. 그러나 대규모 결점나무에 대해서 V와 ${\partial}V/{\partial}{\upsilon}_i$를 해석적인 방법으로 계산하는 것은 매우 복잡하며, 몬테칼로 시뮬레이션을 사용하여 V와 ${\partial}V/{\partial}{\upsilon}_i$의 안정적인 추정치를 얻는 것은 매우 어렵다. 본 연구에서는 불확실성 중요도 측도를 실험적인 방법을 이용하여 평가하기 위한 방법을 제안한다. 제안된 방법은 몬테칼로 시뮬레이션을 이용하는 방법에 비해 계산량이 매우 적으며, 불확실성 중요도의 안정적 인 추정치를 제공한다.

Keywords

References

  1. Apostolakis, G. and Lee, Y. T., "Methods for the estimation of confidence bounds for the top-event unavailability of fault trees," Nuclear Engineering and Design, vol 41, pp.411-419, 1977. https://doi.org/10.1016/0029-5493(77)90082-6
  2. Bhattacharyya, A. K and Ahmed, S., "Establishing data requirements for plant probabilistic risk assessment," Transactions of the American Nuclear Society, vol 43, pp.477-478, 1982.
  3. Nakashima, K. and Yamato, K., "Variance-importance of system components," IEEE Trans. Reliability, vol R-31, pp.99-100, 1982. https://doi.org/10.1109/TR.1982.5221247
  4. Bier, V. M., "A measure of uncertainty importance for components in fault trees," Transactions of the 1983 Winter Meeting of the American Nuclear Society, vol 45, no 1, pp.384-385, 1983.
  5. Pan, Z. J. and Tai, Y. C., "Variance importance of system components by Monte Carlo," IEEE Trans. Reliability, vol 37, pp.421-423, 1988. https://doi.org/10.1109/24.9851
  6. Rushdi, A. M., "Uncertainty analysis of fault-tree outputs," IEEE Trans. Reliability, vol R-34, pp.458-462, 1985. https://doi.org/10.1109/TR.1985.5222232
  7. Iman, R. L. and Hora, S. C., "A robust measure of uncertainty importance for use in fault tree system analysis," Risk Analysis, vol 10, pp.401-406, 1990. https://doi.org/10.1111/j.1539-6924.1990.tb00523.x
  8. Cho, J. G. and Yum, B. J., "Development and evaluation of an uncertainty importance measure in fault tree analysis," Reliability Engineering and System Safety, vol 57, pp.143-157, 1997. https://doi.org/10.1016/S0951-8320(97)00024-0
  9. 조재균, 정석찬, "결점나무 분석에서 불확실성 중요도 측도의 평가," 정보시스템연구, 제17권, 3호, pp.25-37, 2008.
  10. Taguchi, G., Introduction to Quality Engineering, Tokyo: Asian Productivity Association, 1986.
  11. Taguchi, G. and Konishi, S., Experimental Assignment Method Using Orthogonal Tables, Tokyo: JUSE press, 1959 (in Japanese). English Translation: Orthogonal Arrays and Linear Graphs, Michigan: American Suppliers Institute, 1987.
  12. Kackar, R. N., "Off-line quality control, parameter design, and the Taguchi method," J. Quality Control, vol 17, pp.176-188, 1985.
  13. Yu, J. C. and Ishii, K., "Design optimization for robustness using quadrature factorial models," Engineering Optimization, vol 30, pp.203-225, 1998. https://doi.org/10.1080/03052159808941244
  14. Seo, H. S. and Kwak, B. M., "Efficient statistical tolerance analysis for general distributions using three-point information," International J. Production Research, vol 40, pp.931-944, 2002. https://doi.org/10.1080/00207540110095709
  15. Choobineh, F. and Branting, D., "A simple approximation for semivariance," European J. Operational Research, vol 27, pp.364-370, 1986. https://doi.org/10.1016/0377-2217(86)90332-2
  16. Iman, R. L., "A matrix-based approach to uncertainty and sensitivity analysis for fault trees," Risk Analysis, vol 7, pp.21-33, 1987. https://doi.org/10.1111/j.1539-6924.1987.tb00966.x
  17. Kacker, R. N., Lagergren, E. S. and Filliben, J. J., "Taguchi's fixed element arrays are fractional factorials," J. Quality Technology, vol 23, pp.107-116, 1991.