AP A B3] =E A A14E A5F(2009. 12)

Software Architecture Analysis
for Risk Management

Byeongdo Kang’, Roger Y. Lee”

Abstract

Management of risks is critical issue in the project management and it is

important to ensure that risk management is done in a sensible way. Risk analysis is an
activity geared towards risk mitigation in risk management technique. Many techniques to
manage, analyze and reduce risks have been done previously but only few have addressed
the design analysis to reduce risk and none have attempted to analyze architecture to
manage risks. In this paper we try to find a solution through various analyzing various

software architectural design concepts.

We follow Pressman’'s method of analyzing

architecture design, and then alter it to identify risks which are used in risk analysis
process further in risk management process. The risks assessed are analyzed later in the

risk management cycle.

Key Words : Risk Analysis, Architecture Design, Risk Management Process

1. Introduction

The management of risks is a central issue
in the planning and management of any
venture. In the field of Software, Risk
critical

management is a discipline. The

process of risk management embodies the
identification, analysis, planning, tracking,
controlling, and communication of risk. It
gives us a structured mechanism to provide
visibility into threats to project success. Risk
management is a discipline for living with the
possibility that future events may cause
adverse effects[1]. Risk management partly
means reducing uncertainty. Of course,
reducing uncertainty has a cost associated
with it. We need to balance such costs we
could incur if the risk is not addressed. It

may not be

cost-effective to reduce

« Ol TEItE AFE 1T w5
* Professor, Dept. of Computer Science, CMU, USA.

uncertainty too much. If we are trying for a
risk free system or risk reduction then the
cost incurred would be more. So we should
manage risk instead of getting 1id of them.
The need to manage risk increases with
system complexity. Figure 1 demonstrates
indicating that as the
complexity of the system increases, both
technical and

this concept by

non-technical (cost and
schedule) risks increase[2]. Several methods
to manage risks have been developed, but
most of them focus on three basic constructs
for software risk management developed at
Risk Management Paradigm, Risk Taxonomy,
Risk Clinic, and Risk Management Guidebooks
by the Software Engineering Institute. The
popular SRE is an initiator for continuous
risk management(CRM) and team risk
management(TRM)[3].

- 83 -

Risk

4 | System Complexity

<Figure 1> Risk versus system complexity

2. Risk Management Techniques

In this section we provide details about the
other techniques we investigated. Section 2.1
summary over Team Risk
Management approach. Section 2.2 describes
Software Risk Evaluation approach for Risk

describes our

Management. Section 2.3 presents continuous
risk management approach for Risk

Management.
2.1 Team Risk Management Approach
Team Risk . Management[5] is a new

developed by The
Engineering Institute(SEI), a federally funded

paradigm Software
research and development center and part of
in Pittsburgh,
Pennsylvania. Team Risk Management is a

Carnegie Mellon University

paradigm for program or project management

by developing a shared product vision,
focused on results, and using the principles
and tools of risk management to cooperatively
manage risks and opportunities. Team Risk
Management establishe_s an environment built
on a set of processes, methods, and tools that
enable the customer and supplier to work
together cooperatively continuously managing
risks throughout the life cycle of a software
dependent development program. Team Risk
Management implements SEI Risk Paradigm
functions for risk management: adding the
vision and

principles of shared product

teamwork to make up the functions of Team

Risk Management. Team Risk Management
adds two new functions, Initiate and Team,
cultural

to recognize both the required

paradigm shift and the emphasis on
teamwork. SRE’s risk paradigm is shown in
figure 2, Team Risk Management model will
have all the phases of that in figure 2 and
also additional customer and
supplier in the Each
function has a set of activities that are

methods to

components
identification phase.
backed by processes, improve
communication and teamwork.

2.2 Software Risk Evaluation Service
Approach

The SRE process has been in evolutionary
development at the SEI since 1992 and has
been used on over 50 Department of Defense
(DoD) and civil (federal and state) contractors
and program offices. The SRE addresses the
identification, analysis, planning, and
communication elements of the SEI Risk
Paradigm. Figure 2 show the SRE paradigm.
The SRE, while not the only identification
method available, is typically the initial and
most prominent one used on a project. The
analysis element is also covered fully by SRE
activities. are partially

addressed through the construction of high

Planning elements

level mitigation strategy plans. The SRE also
contributes significantly to the communication
of the
control, are not

element. The remaining elements

paradigm, tracking and
addressed during an SRE. Figure 3 shows the
SRE’s five phases — Contracting, Risk
Identification and Analysis, Interim, Report,
Mitigation Strategy Planning(MSP), and Final
Report. By implementing a Software Risk
Evaluation, management improves its ability
to assure success through the creation of a

proactive risk management methodology.

84

<Figure 2> SRE's risk paradigm
2.3 Continuous Risk Management

Continuous Risk Management is a software
engineering practice with processes, methods,
and tools for managing risks in a project[4].
It provides a disciplined environment for
Continuous risk
management is built on set of principles that
if followed gives an effective approach of
managing risk. Figure 3 shows the seven
principles of CRM’s risk management. The
SEI SRE establishes a baseline set of risks,
for the start phase of Continuous Risk
Management and

proactive decision-making.

extends it to
customer—supplier relationships. When using
continuous Risk Management, risks are
continuously and used for
decision-making in all phases of a project.
Risk are carried forward and dealt with until
they are resolved or they turn into problems

that are easy to handle.

assessed

<Figure 3> Phases in SRE

3. Our proposed Approach to Risk
Management and Analysis.
overview of our

Figure 4 shows the

approach. FEach step and sub-steps are

explained further.

Identify Risk Risk Analysis

\ /

Architectural

Design Solution

<Figure 4> Overview of our approach

3.1 ldentify Risks

Before risks can be managed, they must be
identified. We should identify risks before
they cause problems. Identification of risks
could be done by any approach. But here we
are using SEl's techniques for surfacing risks.
Preferably Identification of risk should give us
a risk statement or a component so that we
can apply our next step of constructing
architecture risk pattern, so the component
should derive directly or indirectly risk
patterns. We are basically concerned with
managing risks and not much concerned
about identification risks. Risk identification

phase includes following steps:

Risk checklists.
broken down into a structure of checklist.

Identified risks are

Risks identified at each level of software
engineering process can be subdivided and
added to
requirements,

respective phase like r1isks in

design, coding, testing and
integration etc. This may include prioritizing
risks by categorizing them into likely, less
likely unlikely etc.
Risk assessment. The risk assessment is

done by assessment team. It reviews the

85

project profile by project manager conducts
the interviews. After the interview session
the risks are recorded.

3.2 Risk Assessment

Risk Assessment in a project is the most
difficult phase of all to be carried out. From
the definition we gave elsewhere, a risk is a
combination of uncertainty and constraint.
Constraints are usually difficult to remove,
though it is important to understand them.
Figure 5 shows three circles which indicate
the most important quality measurements of
the project. And the most important of these
is meeting the users’ requirements. How
many projects do we know where the team
has not bothered with ensuring that the users
understand what is proposed, but has got on
with the interesting part of the project -
actually implementing it.

Existing methods for software architecture
analysis of flexibility looks for scenarios that
are likely to happen and then assess their
impact. Our approach is based on building on
the definition of a number of categories of
scenarios: 1) Scenarios that have external
effects, 2) Scenarios which in turn affect the
system itself, 3) Scenarios that change the
relationship, 4) Scenarios that changes the
internal

structure of the system and

5) Scenarios that introduce conflicts.

Elements of Project Success

Users
Reguremenis

<Figure 5> Risk Assessment

In the first case, the owner of the system
initiates the scenarios and in second case, the
initiated by the owner of
another system. The reasons we have decided

scenarios are

to view a system’s software architecture in
term of scenarios are 1) The role of the
system within the environment and 2) The
internal structure of the system.

This brings us to the third and fourth
which are the scenarios that
require adaptations. Most radical type of
changes not only do they affect the internals
of a number of components, but they also
affect the way in which these components
collaborate. The fifth and final category we
have defined are the scenarios that introduce

categories,

conflicts. This problem may occur in a
situation where components are shared by
several systems. When a system then requires
changes to one of these components, different
problems may be introduced. This means that
the corresponding scenario cannot be
implemented as such. The changes that are
scenarios may come from a
distinguish the

following four sources of changes:

incurred by
number of sources. We
- Functional requirements

- Quality requirements

- External components used
- Technical environment

The first source of changes is the set of
functional requirements. Examples of changes
in the functional requirements are features
that have to be added or unwanted
functionality that has to be deleted. The
second source of changes is the set of quality
requirements. Changes that can occur in the
quality requirements are, for instance, the
need for increased performance or the need
for increased security. The third source of
changes is the set of external components

86

used. When these components change, the
system may have to be adapted. This
situation often occurs when a system makes
use of components of another system, or
when generic components are shared hy a
number of systems. The main problem is that
these components are often owned by others,
which means that the owner of the system
concerned does not have full control over
them. As a changes are
sometimes forced upon the system and its
owner. Something similar applies to the fourth
source

result, these

of changes, namely the technical
environment. In more and more organizations
the technical environment 1is shared by
several systems. So, just like the external
components it could happen that the system
has to be adapted to changes that are
initiated by others than the owner of the
system concerned. This is something that has
to be taken into account when analyzing a
system’s inflexibility. The best way to use
start by
reading documentation and
mterviewing stakeholder. This leads to an

initial set of scenarios. The next step then is

this diagram 1is to
scenarios by

identifying

to classify these scenarios. This classification
provides insight into the completeness of our
initial set of scenarios.

Estimate scenario risk factor:

Use the Rational Rose tool as front end
tool for transforming scenarios into UML
models. The tool automatically constructs the
Markov chain that represents the control flow
graph of the components and
connectors in a specific scenario based on the
textual representation of the UML sequence
diagrams. The scenario risk factor for each
severity level is computed using this Markov
chain and the estimated values of component

active

and connector risk factors.

Prioritize the scenarios:

Establish which of those Risk Scenarios
should be eliminated completely, because of
potential extreme impact, which should have
usual management attention, and which are
minor to avoid detailed management attention.

Estimate use case and overall system risk

factors:

The risk factors of each scenaric in a
specific use case are aggregated to calculate
the use case risk factor. Using the risk factor
for each use case, the tocl calculates the
overall system risk factor.

4. Case Study

We have selected a case study of an ATM
to discuss the applicability of the proposed
methodology. Transaction on ATM machines
is a critical real-time application. An error in
the software operation of the device can
cause loss transactions, money, and lead
dangerous outcomes. Therefore, it is
necessary to model its architecture in an
executable form to validate the timing and
deadline executable

architecture are also used, based on the

constraints. This

proposed methodology, to conduct risk
analysis.

5. Validity

This method involves the existing risk
assessment and analysis method through
architectural design it might prove to

expensive since more resource would be spent
on recognizing and analysis use case
scenarios and estimating risk factor based on

that. This also requires skilled architects and

- 87 -

analyst to build and analyze risk factors
which is required for later phases. Though
this might prove expensive compared to the
cost of managing risk without analyzing
architectural design, this would help in
managing more risks as each scenario gives
us idea of handling common risks and
different risks. The
which includes analyzing scenarios not only

helps in risk management but also further in

architecture analysis

testing phases and other projects with same
risks. In projects with few risks this method
would expensive to implement.

6. Results and Conclusions

In this paper, we present architectural level

risk analysis based on scenarios. The
prototype enables early assessment of risk
and hence makes it possible for the analyst
to identify critical components/connectors and
scenarios/use cases early in the software life
cycle. The output of this method is
development and testing effort based on
critical use cases, scenarios, components, and
connectors. Qur future plan is to further
extend the tool so that it computes and
interprets quality metrics, even though the
result maybe not as sensitive for early risk
assessment. In addition, we plan to integrate
the requirement analysis methodology into our
prototype along with risks to allows precise
estimation of the severity level for each

architectural design.
Acknowledgements

This work is supported by Daegu University
Grant(2007).

References

[1] HF. Kloman, "Risk Management Agonists,”
Risk Analysis 10, 2(1990): pp. 201-205.

[2] "Know about the Latest & Hot Strategies in
technology,” http://technologystrategies.blog
spot.com/, Retrieved March 27, 2006.

[3] R.C. Williams, G. J. Pandelios, S.G. Behrens,
Software Risk Evaluation (SRE) Method
Description(Version 2.0), December, 1999.

[4]1 R.L. Murphy, C. J. Alberts, R.C. Williams,
R.P. Higuera, A.]. Dorofee, J. A. Walker,
Continuous Risk Management Guidebook,
SEI Carnegie Mellon University, 1996.

[5] R.P. Higuera, D.P. Gluch, A.]J. Dorofee,
RL. Murphy, Julie A. Walker, R. C.
Williams, An Introduction to Team Risk
Management (Version 1.0), Special Report
CMU/SEI-94-SR-1, May, 1994.

- 88 -

7 W X (Byeongdo Kang)

* 1995 Al &ujgtul o] ghukAl
(MAkahsl dF

e 198314 ~1998\d &= H A= 4l
A9 AdA74

¢ 20043 "= CMU Research Associate

Roger Y. Lee

Dr. Roger Lee is the Director
of Software Engineering &
Information Institute and
Professor of Computer Science
at Central Michigan University,
Mount Pleasant, Michigan, U.S.A. He received
his Ph.D. in Computer Science from Shizuoka
University, Japan and M.S. and PhD. in
Computer Science from The University of
Southern Mississippi, US.A, His current
research interest areas include Requirements
Engineering, Software Architecture, and
Component-Based Development. Dr. Lee
published more than 120 technical papers in
international journals and conference proceedings.
Dr. Lee’s contributions to the field include the
establishment of the International Association
for Computer and Information Science (ACIS)
and the International Journal of Computer and
Information Science (IJCIS). He is currently
serving as the Editor-in-Chief of International
Journal of Computer & Information Science.
Dr. Lee has served as conference chairs and

program chairs and reviewed papers for
many international conferences. He is a
member of ACM, IEEE, and ACIS.

- 89 ~

