DOI QR코드

DOI QR Code

The Change of Taurine Transport in Variable Stress States through the Inner Blood-Retinal Barrier using In Vitro Model

  • Kang, Young-Sook (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Sookmyung Women's University) ;
  • Lee, Na-Young (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Sookmyung Women's University) ;
  • Chung, Yeon-Yee (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Sookmyung Women's University)
  • Published : 2009.04.30

Abstract

Taurine is the most abundant free amino acid in the retina and transported into retina via taurine transporter (TauT) at the inner blood-retinal barrier (iBRB). In the present study, we investigated whether the taurine transport at the iBRB is regulated by oxidative stress or disease-like state in a conditionally immortalized rat retinal capillary endothelial cell line (TR-iBRB) used as an in vitro model of iBRB. First, [$^3H$]taurine uptake and efflux by TR-iBRB were regulated in the presence of extracellular $Ca^{2+}$. [$^3H$]Taurine uptake was inhibited and efflux was enhanced under $Ca^{2+}$ free condition in the cells. In addition, oxidative stress inducing agents such as tumor necrosis factor-$\alpha$ (TNF-$\alpha$), lipopolysaccharide (LPS), diethyl maleate (DEM) and glutamate increased [$^3H$]taurine uptake and decreased [$^3H$]taurine efflux in TR-iBRB cells. Whereas, 3-morpholinosydnonimine (SIN-1), which is known to NO donor decreased [$^3H$]taurine uptake. Lastly, TR-iBRB cells exposed to high glucose (25 mM) medium and the [$^3H$]taurine uptake was reduced about 20% at the condition. Also, [$^3H$]taurine uptake was decreased by cytochalasin B, which is known to glucose transport inhibitor. In conclusion, taurine transport in TR-iBRB cells is regulated diversely at extracellular $Ca^{2+}$, oxidative stress and hyperglycemic condition. It suggested that taurine would play a role as a retinal protector in diverse disease states.

Keywords

References

  1. Bannai, S. (1984). Induction of cystine and glutamate transport activity in human fibroblast by diethyl maleate and other electrophilic agents. J. Biol. Chem. 289, 2435-2440
  2. Bridges, C. C., Ola, M. S., Prasad, P. D., El-sherbeny, A., Ganapathy, V. and Smith, S.B. (2001). Regulation of taurine transporter expression by NO in cultured human retinal pigment epithelial cells. Am. J. Physiol. Cell Physiol. 281, 1825-1836 https://doi.org/10.1152/ajpcell.2001.281.6.C1825
  3. Cunha-Vaz, J. G. (1976). The blood-retinal barriers. Doc. Ophthalmol. 41, 287-327 https://doi.org/10.1007/BF00146764
  4. Goldstein, I. M., Ostwald, P. and Roth, S. (1996). Nitric oxide: a review of its role in retinal function and disease. Vision Res. 36, 2979-2994 https://doi.org/10.1016/0042-6989(96)00017-X
  5. Han, X., Budreau, A. M. and Chesney, R. W. (2000). Cloning and characterization of the promoter region of the rat taurine transporter (TauT) gene. Adv. Exp. Med. Biol. 483, 97-108 https://doi.org/10.1007/0-306-46838-7_9
  6. Hayes, K. C., Carey, R. E. and Schmidt, S. Y. (1975). Retinal degeneration associated with taurine deficiency in the cat. Science. 188, 949-951 https://doi.org/10.1126/science.1138364
  7. Heller-Stilb, B., Van Roeyen, C., Rascher, K., Hartwig, H.G., Huth, A., Seeliger, M. W., Warskulat, U. and Haeussinger, D. (2002). Disruption of the taurine transporter gene (taut) leads to retinal degeneration in mice. FASEB J. 16, 231-233 https://doi.org/10.1096/fj.01-0691fje
  8. Hosoya, K., Saeki, S. and Terasaki, T. (2001). Activation of carrier-mediated transport of L-cystine at the blood-brain and blood-retinal barrier in vivo. Microvasc. Res. 62, 136-142 https://doi.org/10.1006/mvre.2001.2328
  9. Hosoya, K., Tomi, M., Ohtsuki, S., Takanaga, H., Ueda, M., Yanai, N., Obinata, M. and Terasaki, T. (2001). Conditionally immortalized retinal capillary endothelial cell lines (TR-iBRB) expressing differentiated endothelial cell functions derived from a transgenic rat. Exp. Eye Res. 72, 163-172 https://doi.org/10.1006/exer.2000.0941
  10. Kang, Y. S. and Kim, S. J. (2008). The change of taurine transport in osteocytes by oxidative stress, hypertonicity and calcium channel blockers. Biomol. Ther. 16, 219-225 https://doi.org/10.4062/biomolther.2008.16.3.219
  11. Kang, Y. S., Ohtsuki, S., Takanaga, H., Tomi, M., Hosoya K. and Terasaki, T. (2002). Regulation of taurine trnasport at the blood-brain barrier by tumor necrosis factor-$\alpha$, taurine and hypertonicity. J. Neurochem. 83, 1188-1195 https://doi.org/10.1046/j.1471-4159.2002.01223.x
  12. Kim, H. W., Kim, J. H., An, H. S., Park, K. K., Kim, B. K. and Park T. (2003). Myo-inositol restores the inflammationinduced down-regulation of taurine transport by the murine macrophage cell line, RAW 264.7. Life Sci. 73, 2477-2489 https://doi.org/10.1016/S0024-3205(03)00656-8
  13. Kulanthaivel, P., Leibach, F. H., Mahesh, V. B. and Ganapathy, V (1989). Tyrosine residues are essential for the activity of the human placental taurine transpoter. Biochem. Biophys. Acta. 985, 139-146 https://doi.org/10.1016/0005-2736(89)90358-1
  14. Lee, N. Y. and Kang, Y. S. (2004). The brain-to-blood efflux transport of taurine and changes in the blood-brain barrier transport system by tumor necrosis factor-alpha. Brain Res. 1023, 141-147 https://doi.org/10.1016/j.brainres.2004.07.033
  15. Lima, L. (1999). Taurine and its trophic effects in the retina. Neurochem. Res. 24, 1333-1338 https://doi.org/10.1023/A:1027376511473
  16. Lyall, F., Freer, I., Young, A. and Myatt, L. (1996). Nitric oxide concentrations are increased in the fetal-placental circulation in intrauterine growth restriction. Placenta. 17, 165-168 https://doi.org/10.1016/S0143-4004(96)80009-9
  17. McManus, M. L., Churchwell, K. B. and Strange, K. (1995). Regulation of cell volume in health and disease. N. Engl. J. Med. 333, 1260-1266 https://doi.org/10.1056/NEJM199511093331906
  18. Molchanova, S. M., Oja, S. S. and Saransaari, P. (2005). Mechanism of enhanced taurine release under $Ca^{2+}$ depletion. Neurochem. Int. 47, 343-349 https://doi.org/10.1016/j.neuint.2005.04.027
  19. Myatt, L. Rosenfield, R. B., Eis, A. L., Brockman, D. E., Greer, I. and Lyall, F. (1996). Nitrotyrosine residues in placenta. Evidence of peroxynitrite formation and action. Hypertension. 28, 488-493 https://doi.org/10.1161/01.HYP.28.3.488
  20. Obrosova, I. G., Minchenko, A. G., Marinescu, V., Fathallah, L., Kennedy, A., Stockert, C. M., Frank, R. N. and Stevens, M.J. (2001). Antioxidants attenuate early up regulation of retinal vascular endothelial growth factor in streptozotocin-diabeitc rats. Diabetologia. 44, 1102-1110 https://doi.org/10.1007/s001250100631
  21. Pasantes-Morales, H., Klethi, J., Ledig, M. and Mandel, P. (1972). Free amino acids of chicken and rat retina. Brain Res. 41, 494-497 https://doi.org/10.1016/0006-8993(72)90523-9
  22. Shi, Y. R., Gao, L., Wang, S. H., Bu, D. F., Zhang, B. H., Jiang, H. F., Zheng, Y. and Tang, C. H. (2003). Inhibition of taurine transport by high concentration of glucose in cultured rat cardiomyocytes. Metabolism, 52, 827-833 https://doi.org/10.1016/S0026-0495(03)00067-2
  23. Smith, K. E., Borden, L. A. and Wang, C. R. (1992). Cloning and expression of a high affinity taurine transporter from rat brain. Mol. Pharmacol. 42, 563-569
  24. Stevens, M. J., Hosaka, Y., Masterson, J. A., Jones, S. M., Thomas, T. P. and Larkin, D. D. (1999). Down regulation of the human taurine transporter by glucose in cultured retinal pigment epithelial cells. Am. J. Physiol. 277, 760-771
  25. Stewart, P. A. and Tuor, U. I. (1994). Blood-eye barriers in the rat: correlation of ultrastructure with function. J. Comp. Neurol. 340, 566-576 https://doi.org/10.1002/cne.903400409
  26. Terasaki, T. and Hosoya, K. (2001). Conditionally immortalized cell lines as a new in vitro model for the study of barrier functions. Biol. Pharm. Bull. 24, 111-118 https://doi.org/10.1248/bpb.24.111
  27. Tomi, M., Terayama, T., Isobe, T., Egami, F., Morito, A., Kurachi, M., Ohtsuki, S., Kang, Y. S., Terasaki, T. and Hosoya, K. (2007). Function and regulation of taurine transport at the inner blood-retinal barrier. Microvascular Res. 73, 100-106 https://doi.org/10.1016/j.mvr.2006.10.003
  28. Tornquist, P. and Alm, A. (1986). Carrier-mediated transport of amino acids through the blood-retinal barrier and the blood-brain barriers. Graefes Arch. Clin. Exp. Ophthalmol. 224, 21-25 https://doi.org/10.1007/BF02144127
  29. Vinton, N. E., Heckenlively, J. R., Laidlaw, S. A., Martin, D. A., Foxman, S. R., Ament, M. E. and Kopple, J. D. (1990). Visual function in patients undergoing long-term total parental nutrition. Am. J. Nutr. 52, 895-902 https://doi.org/10.1093/ajcn/52.5.895

Cited by

  1. Effects of Bisphosphonates on Glucose Transport in a Conditionally Immortalized Rat Retinal Capillary Endothelial Cell Line (TR-iBRB Cells) vol.24, pp.1, 2016, https://doi.org/10.4062/biomolther.2015.183