DOI QR코드

DOI QR Code

Reactive Oxygen Species-Induced Expression of B cell Activating Factor (BAFF) Is Independent of Toll-like Receptor 4 and Myeloid Differentiation Primary Response Gene 88

  • Kim, Hyun-Sun (Department of Bioscience and Biotechnology, Sejong University) ;
  • Moon, Eun-Yi (Department of Bioscience and Biotechnology, Sejong University)
  • Published : 2009.04.30

Abstract

Reactive oxygen species play a role in signal transduction and in many human diseases. B-cell activating factor (BAFF) plays a role for mature B cell generation and maintenance and for the incidence of autoimmune diseases. We previously reported that BAFF expression was induced by ROS. In this study, we investigated whether ROS-induced BAFF expression was affected by toll-like receptor (TLR) 4 or myeloid differentiation primary response gene (MyD) 88. BAFF expression was increased by serum deprivation that is an experimental modification to produce ROS. In contrast, TLR4 and MyD88 were decreased by serum deprivation. Although ROS production was decreased in TLR4-nonfunctional or MyD88-deficient splenocytes as compared to that in control mice, serum deprivation increased ROS production and augmented BAFF expression in both cells. $50{\mu}M\;H_2O_2$ also increased BAFF expression in TLR4-deficient or MyD88-deficient splenocytes. Collectively, results show that BAFF expression may be mediated by TLR4 or MyD88-independent manner and TLR4 or MyD88 may not be required in BAFF expression.

Keywords

References

  1. Adachi, O., Kawai, T., Takeda, K., Matsumoto, M., Tsutsui, H., Sakagami, M., Nakanishi, K. and Akira, S. (1998). Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9, 143-150 https://doi.org/10.1016/S1074-7613(00)80596-8
  2. Akira, S., Yamamoto, M. and Takeda, K. (2003). Role of adapters in Toll-like receptor signaling. Biochem. Soc. Trans. 31, 637-642 https://doi.org/10.1042/BST0310637
  3. Asehnoune, K., Strassheim, D., Mitra, S., Kim, J. Y. and Abraham, E. (2004). Involvement of reactive oxygen species in Toll-like receptor 4-dependent activation of NF-kappa B. J. Immunol. 172, 2522-2529 https://doi.org/10.4049/jimmunol.172.4.2522
  4. Baeuerle, P. A. and Henkel, T. (1994). Function and activation of NF-kappa B in the immune system. Annu. Rev. Immunol. 12, 141-179 https://doi.org/10.1146/annurev.iy.12.040194.001041
  5. Choi, M. H., Lee, I. K., Kim, G. W., Kim, B. U., Han, Y. H., Yu, D. Y., Park, H. S., Kim, K. Y., Lee, J. S., Choi, C., Bae, Y. S., Lee, B. I., Rhee, S. G. and Kang, S. W. (2005). Regulation of PDGF signalling and vascular remodelling by peroxiredoxin II. Nature. 435, 347-353 https://doi.org/10.1038/nature03587
  6. Corrigan, C. (2004). Mechanisms of intrinsic asthma. Curr. Opin. Allergy Clin. Immunol. 4, 53-56 https://doi.org/10.1097/00130832-200402000-00011
  7. Dhar, A., Young, M. R. and Colburn, N. H. (2002). The role of AP-1, NF-kappaB and ROS/NOS in skin carcinogenesis: the JB6 model is predictive. Mol. Cell Biochem. 234-235, 185-193 https://doi.org/10.1023/A:1015948505117
  8. Flohe, L., Brigelius-Flohe, R., Saliou, C., Traber, M. G. and Packer, L. (1997). Redox regulation of NF-kappa B activation. Free Radic. Biol. Med. 22, 1115-1126 https://doi.org/10.1016/S0891-5849(96)00501-1
  9. Fu, L., Lin-Lee, Y. C., Pham, L. V., Tamayo, A., Yoshimura, L. and Ford, R. J. (2006). Constitutive NF-kappaB and NFAT activation leads to stimulation of the BLyS survival pathway in aggressive B-cell lymphomas. Blood 107, 4540-4548 https://doi.org/10.1182/blood-2005-10-4042
  10. Gerritsen, M. E., Williams, A. J., Neish, A. S., Moore, S., Shi, Y. and Collins, T. (1997). CREB-binding protein/p300 are transcriptional coactivators of p65. Proc. Natl. Acad. Sci. USA. 94, 2927-2932 https://doi.org/10.1073/pnas.94.7.2927
  11. Han, Y. H., Kim, H. S., Kim, J. M., Kim, S. K., Yu, D. Y. and Moon, E. Y. (2005). Inhibitory role of peroxiredoxin II (Prx II) on cellular senescence. FEBS Lett. 579, 4897-4902 https://doi.org/10.1016/j.febslet.2005.07.049
  12. Han, Y. H., Kwon, J. H., Yu, D. Y. and Moon, E. Y. (2006). Inhibitory effect of peroxiredoxin II (Prx II) on Ras-ERK-NFkappaB pathway in mouse embryonic fibroblast (MEF) senescence. Free Radic. Res. 40, 1182-1189 https://doi.org/10.1080/10715760600868552
  13. Hollingsworth, J. W., Whitehead, G. S., Lin, K. L., Nakano, H., Gunn, M. D., Schwartz, D. A. and Cook, D. N. (2006). TLR4 signaling attenuates ongoing allergic inflammation. J. Immunol. 176, 5856-5862 https://doi.org/10.4049/jimmunol.176.10.5856
  14. Hultmark, D. (1994). Macrophage differentiation marker MyD88 is a member of the Toll/IL-1 receptor family. Biochem. Biophys. Res. Commun. 199, 144-146 https://doi.org/10.1006/bbrc.1994.1206
  15. Janknecht, R. and Hunter, T. (1996). Transcription. A growing coactivator network. Nature 383, 22-23 https://doi.org/10.1038/383022a0
  16. Janknecht, R. and Hunter, T. (1996). Versatile molecular glue. Transcriptional control. Curr. Biol. 6, 951-954 https://doi.org/10.1016/S0960-9822(02)00636-X
  17. Litinskiy, M. B., Nardelli, B., Hilbert, D. M., He, B., Schaffer, A., Casali, P. and Cerutti, A. (2002). DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat. Immunol. 3, 822-829 https://doi.org/10.1038/ni829
  18. Lord, K. A., Hoffman-Liebermann, B. and Liebermann, D. A. (1990). Nucleotide sequence and expression of a cDNA encoding MyD88, a novel myeloid differentiation primary response gene induced by IL6. Oncogene 5, 1095-1097
  19. Mackay, F., Schneider, P., Rennert, P. and Browning, J. (2003). Baff and april: a tutorial on B cell survival. Annu. Rev. Immunol. 21, 231-264 https://doi.org/10.1146/annurev.immunol.21.120601.141152
  20. Mackay, F., Woodcock, S. A., Lawton, P., Ambrose, C., Baetscher, M., Schneider, P., Tschopp, J. and Browning, J. L. (1999). Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J. Exp. Med. 190, 1697-1710 https://doi.org/10.1084/jem.190.11.1697
  21. Mates, J. M., Perez-Gomez, C. and Nunez de Castro, I. (1999). Antioxidant enzymes and human diseases. Clin. Biochem. 32, 595-603 https://doi.org/10.1016/S0009-9120(99)00075-2
  22. Moon, E. Y. (2008). Serum deprivation enhances apoptotic cell death by increasing mitochondrial enzyme activity. Biomol. Ther. 16, 1-8 https://doi.org/10.4062/biomolther.2008.16.1.001
  23. Moon, E. Y., Han, Y. H., Lee, D. S., Han, Y. M. and Yu, D. Y. (2004). Reactive oxygen species induced by the deletion of peroxiredoxin II (PrxII) increases the number of thymocytes resulting in the enlargement of PrxII-null thymus. Eur. J. Immunol. 34, 2119-2128 https://doi.org/10.1002/eji.200424962
  24. Moon, E. Y., Kang, J. S., Han, S. H., Yang, K. H., Pyo, S., Lee, M. Y., Lee, H. K. and Yu, D. Y. (2008). Differential role of peroxiredoxin II (PrxII) on the expression of toll-like receptor 4 (TLR4) and B-cell activating factor (BAFF) in ovalbumin (OVA)-induced mouse asthma. Int. Immunopharmacol. 8, 935-944 https://doi.org/10.1016/j.intimp.2008.01.022
  25. Moon, E. Y., Lee, J. H., Oh, S. Y., Ryu, S. K., Kim, H. M., Kwak, H. S. and Yoon, W. K. (2006). Reactive oxygen species augment B-cell-activating factor expression. Free Radic. Biol. Med. 40, 2103-2111 https://doi.org/10.1016/j.freeradbiomed.2006.02.007
  26. Muzio, M., Ni, J., Feng, P. and Dixit, V. M. (1997). IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 278, 1612-1615 https://doi.org/10.1126/science.278.5343.1612
  27. Ostergaard, P. A. (1985). Non-IgE-mediated asthma in children. Acta. Paediatr. Scand. 74, 713-719 https://doi.org/10.1111/j.1651-2227.1985.tb10019.x
  28. Perkins, N. D., Felzien, L. K., Betts, J. C., Leung, K., Beach, D. H. and Nabel, G. J. (1997). Regulation of NF-kappaB by cyclin-dependent kinases associated with the p300 coactivator. Science 275, 523-527 https://doi.org/10.1126/science.275.5299.523
  29. Rackeman, F. M. (1947). A working classification of asthma. Am. J. Med. 33, 601-606 https://doi.org/10.1016/0002-9343(47)90204-0
  30. Sanlioglu, S., Williams, C. M., Samavati, L., Butler, N. S., Wang, G., McCray, P. B. Jr., Ritchie, T. C., Hunninghake, G. W., Zandi, E. and Engelhardt, J. F. (2001). Lipopolysaccharide induces Rac1-dependent reactive oxygen species formation and coordinates tumor necrosis factor-alpha secretion through IKK regulation of NF-kappa B. J. Biol. Chem. 276, 30188-30198 https://doi.org/10.1074/jbc.M102061200
  31. Schiemann, B., Gommerman, J. L., Vora, K., Cachero, T. G., Shulga-Morskaya, S., Dobles, M., Frew, E. and Scott, M. L. (2001). An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science 293, 2111-2114 https://doi.org/10.1126/science.1061964
  32. Schneider, P., MacKay, F., Steiner, V., Hofmann, K., Bodmer, J. L., Holler, N., Ambrose, C., Lawton, P., Bixler, S., Acha-Orbea, H., Valmori, D., Romero, P., Werner-Favre, C., Zubler, R. H., Browning, J. L. and Tschopp, J. (1999). BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J. Exp. Med. 189, 1747-1756 https://doi.org/10.1084/jem.189.11.1747
  33. Tai, Y. T., Li, X. F., Breitkreutz, I., Song, W., Neri, P., Catley, L., Podar, K., Hideshima, T., Chauhan, D., Raje, N., Schlossman, R., Richardson, P., Munshi, N. C. and Anderson, K. C. (2006). Role of B-cell-activating factor in adhesion and growth of human multiple myeloma cells in the bone marrow microenvironment. Cancer Res. 66, 6675-6682 https://doi.org/10.1158/0008-5472.CAN-06-0190
  34. Toledano, M. B. and Leonard, W. J. (1991). Modulation of transcription factor NF-kappa B binding activity by oxidationreduction in vitro. Proc. Natl. Acad. Sci. USA. 88, 4328-4332 https://doi.org/10.1073/pnas.88.10.4328
  35. Wesche, H., Henzel, W. J., Shillinglaw, W., Li, S. and Cao, Z. (1997). MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 7, 837-847 https://doi.org/10.1016/S1074-7613(00)80402-1
  36. Zhang, H., Spapen, H., Nguyen, D. N., Benlabed, M., Buurman, W. A. and Vincent, J. L. (1994). Protective effects of N-acetyl-L-cysteine in endotoxemia. Am. J. Physiol. 266, H1746-1754 https://doi.org/10.1152/ajpheart.1994.266.5.H1746

Cited by

  1. KR33426, [2-(2,5-dichlorophenyl)-5-methyloxazol-4yl]carbonylguanidine, is a novel compound to be effective on mouse systemic lupus erythematosus vol.668, pp.3, 2011, https://doi.org/10.1016/j.ejphar.2011.07.026
  2. Ginsenoside Rp1, a Ginsenoside Derivative, Blocks Promoter Activation of iNOS and COX-2 Genes by Suppression of an IKKβ-mediated NF-κB Pathway in HEK293 Cells vol.35, pp.2, 2011, https://doi.org/10.5142/jgr.2011.35.2.200
  3. Protein kinase C stimulates human B cell activating factor gene expression through reactive oxygen species-dependent c-Fos in THP-1 pro-monocytic cells vol.59, pp.1, 2012, https://doi.org/10.1016/j.cyto.2012.03.017
  4. Toll-like receptor 4-mediated cAMP production up-regulates B-cell activating factor expression in Raw264.7 macrophages vol.317, pp.17, 2011, https://doi.org/10.1016/j.yexcr.2011.07.003
  5. Prototypes of Panaxadiol and Panaxatriol Saponins Suppress LPS-mediated iNOS/NO Production in RAW264.7 Murine Macrophage Cells vol.26, pp.12, 2016, https://doi.org/10.5352/JLS.2016.26.12.1422
  6. ROS/Epac1-mediated Rap1/NF-kappaB activation is required for the expression of BAFF in Raw264.7 murine macrophages vol.23, pp.9, 2011, https://doi.org/10.1016/j.cellsig.2011.05.001
  7. Mouse Melanoma Cell Migration is Dependent on Production of Reactive Oxygen Species under Normoxia Condition vol.20, pp.2, 2012, https://doi.org/10.4062/biomolther.2012.20.2.165
  8. Hypoxia Induces Paclitaxel-Resistance through ROS Production vol.18, pp.2, 2009, https://doi.org/10.4062/biomolther.2010.18.2.145