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ON THE VOLUMES OF CANONICAL CUSPS
OF COMPLEX HYPERBOLIC MANIFOLDS

Inkang Kim and Joonhyung Kim

Abstract. We first introduce a complex hyperbolic space and a complex
hyperbolic manifold. After defining the canonical horoball and the canon-
ical cusp on the complex hyperbolic manifold, we estimate the volumes
of canonical cusps of complex hyperbolic manifolds. Finally, we deal with
cusped, complex hyperbolic 2-manifolds, and in particular, the ones with
only one cusp.

1. Introduction

In [5], J. R. Parker estimates the volumes of canonical cusps of complex
hyperbolic manifolds. After dealing with the general case, he improves that
result in the case of (complex) dimension 2, and also extends it when the
manifold has only one cusp. More concretely, he proves that the volume of the
canonical cusp of a complex hyperbolic 2-manifold is at least 2/3, and if that
manifold has only one cusp, then at least 1.

In this paper, we investigate the volumes of canonical cusps of complex
hyperbolic 2-manifolds so that we can eliminate one special case, and can make
an improvement on the constant from 1 to 4/3.

The rest of this paper is organized as follows: In §2, we briefly discuss some
definitions and properties related to complex hyperbolic spaces. In §3, we
define the canonical horoball and the canonical cusp on a complex hyperbolic
manifold. Finally in §4, we estimate the volumes of canonical cusps of complex
hyperbolic manifolds.

2. Complex hyperbolic space
2.1. Siegel domain

Let C2,1 be a complex vector space of dimension 3 with a Hermitian form
of signature (2, 1). An element of C2,1 is a column vector z = (z1, z2, z3). In
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what follows, we choose the Hermitian form on C2,1 given by the matrix J

J =




0 0 1
0 1 0
1 0 0


 .

Thus 〈z, w〉 = w∗Jz = z1w3+z2w2+z3w1, where w∗ is the Hermitian transpose
of w.
We may choose other matrices like




0 −1 0
−1 0 0
0 0 1


 or




1 0 0
0 1 0
0 0 −1


 .

We define the Siegel domain S of a complex hyperbolic 2-space H2
C by

identifying points of S with their horospherical coordinates, z = (ζ, v, u) ∈
C×R×R+. For each u > 0, the horosphere of height u is the subset of S given
by Hu = C × R × {u} and the horoball of height u is Bu = C × R × (u,∞).
The boundary of S is given by H0 ∪ {q∞}, where q∞ is a distinguished point
at infinity and H0 = C× R× {0}.

2.2. Heisenberg group

The boundary of a complex hyperbolic space is identified with the one point
compactification of the Heisenberg group. The 3-dimensional Heisenberg group
N is C× R with the group law

(ζ1, v1) ¦ (ζ2, v2) = (ζ1 + ζ2, v1 + v2 + 2Im(ζ1ζ2)).

There is a canonical projection from N to C called the vertical projection given
by Π : (ζ, v) 7→ ζ.

The Heisenberg group acts on itself by Heisenberg translation. For (τ, t) ∈ N,
this translation is

T(τ,t) : (ζ, v) 7→ (ζ + τ, v + t+ 2Im(τζ)) = (τ, t) ¦ (ζ, v).

A Heisenberg translation by (0, t) for any t ∈ R is called the vertical translation
by t. One can easily check that the commutator of Heisenberg translations by
(τ, t) and (σ, s) is a vertical translation by 4Im(στ).

In the case of dimension 2, the Heisenberg rotation is just eiθ. (In general, the
unitary group U(n− 1) acts on the Heisenberg group by Heisenberg rotation.)

2.3. Holomorphic isometries

Define a map S → PC2,1 by

ψ : (ζ, v, u) 7→



(− | ζ |2 −u+ iv)/2
ζ
1


 for (ζ, v, u) ∈ S−{q∞} ; ψ : q∞ 7→




1
0
0


.
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Then ψ maps S homeomorphically to the set of points z in PC2,1 with 〈z, z〉 <
0, and maps ∂S homeomorphically to the set of points z in PC2,1 with 〈z, z〉 =
0. We write ψ(z̃) = z.

The Bergman metric on S is given by the distance formula

cosh2

(
ρ(z̃, w̃)

2

)
=
〈z, w〉〈w, z〉
〈z, z〉〈w,w〉 .

Then the element of volume with the Bergman metric is given by

dVol =
4
u3
dζdvdu.

The holomorphic isometry group of S with respect to the Bergman metric is
the projective unitary group PU(2, 1) and it acts on PC2,1 by matrix multipli-
cation.

The action of Heisenberg isometries extends to the Siegel domain, preserving
each horosphere and fixing q∞. Some examples of Heisenberg isometries are as
follows: The Heisenberg rotation corresponds to the matrix f ∈ PU(2, 1), and
the Heisenberg translation T(τ,t) to the matrix g ∈ PU(2, 1), where

f =




1 0 0
0 eiθ 0
0 0 1


 and g =




1 −τ∗ − | τ |2 /2 + it/2
0 1 τ
0 0 1


 .

When viewed as elements of PU(2, 1), Heisenberg translations are known as
pure-parabolic maps and Heisenberg rotations as boundary-elliptic maps. Since
discrete subgroups of PU(2, 1) can only contain elliptic elements of finite order,
torsion-free discrete groups cannot contain elliptic elements. A Heisenberg
isometry is called screw-parabolic if it is the product of a vertical translation
and a Heisenberg rotation. It preserves the fixed-point set of the Heisenberg
rotation, called the axis, and acts as a vertical translation there. The screw-
parabolic map fixing q∞ with axis (0, v) ⊂ N, rotation multiplier eiθ, and
translation length t is

f =




1 0 it/2
0 eiθ 0
0 0 1


 .

3. Canonical horoballs

Let G be a discrete subgroup of PU(2, 1) so that the stabiliser G∞ of q∞
contains Heisenberg translations by (0, t) and (τ, t

′
), where t > 0 and τ 6= 0.

The horoball B based at q∞ of height

min{t, | |τ |2 + it/2 |}
is called the canonical horoball at q∞ for G.

Let G be a discrete, torsion-free subgroup of PU(2, 1) containing a vertical
translation by t > 0 in the stabiliser G∞ of q∞. The horoball B based at q∞ of



516 INKANG KIM AND JOONHYUNG KIM

height t/2 is called the canonical horoball at q∞ for G. We define the canonical
cusp to be B/G∞.

An important fact on canonical horoballs worth taking note of for our pur-
poses is the following:

Proposition 3.1 (Proposition 5.7 in [2]). Canonical horoballs at distinct par-
abolic fixed points are disjoint.

4. Volumes of canonical cusps

We need two lemmas.

Lemma 4.1 (Lemma 5.2 in [2] or Lemma 1.1 in [5]). Let G be a discrete
cocompact group of Heisenberg isometries which acts on S fixing q∞ ∈ ∂S as
above. Then for any horoball Bu, we have

VolS(Bu/G) =
1
nun

VolN(N/G).

Lemma 4.2 (Lemma 1.2 in [5]). Let L be a Heisenberg lattice. Suppose that
the shortest vertical translation in L is a Heisenberg translation by (0, t), where
t > 0. Then

VolN(N/L) = 4tVolC(C/Π(L)).

4.1. Cusped, complex hyperbolic n-manifolds

As we can see from the following theorem, J. R. Parker in [5], estimates the
volumes of canonical cusps of complex hyperbolic n-manifolds.

Theorem 4.3 (Theorem 3.1 in [5]). Let G be a discrete, torsion-free, cofinite-
volume group of isometries of Hn

C, q∞ a parabolic fixed point of G, and G∞
its stabiliser in G. Suppose that G∞ contains a Heisenberg lattice L as a
subgroup of index m. Let B be the canonical horoball based at q∞. Then
VolS(B/G∞) ≥ 2n/nm.

Corollary 4.4 (Corollary 3.2 in [5]). Let M be a complex hyperbolic n-manifold
of finite volume with k ends. Let In, which is at most 2(6π)(2n−1)(n−1), be the
largest index of a lattice in the fundamental group of a compact Heisenberg
(2n− 1)-manifold. Then VolS(M) ≥ 2nk/nIn.

In [3], by using techniques of algebraic geometry, J.-M. Hwang improves the
above volume constants. But his result tells nothing about canonical cusps.

Theorem 4.5 (Theorem 1.2 in [3]). Following the notations of the result above,
for n ≥ 2,

VolS(M) ≥ (4π)nk

n!(P (4)− P (2))

(
1− n+ 1

P (4)− P (2)

)
,where P (`) :=

(n`+ n+ `)!
n!(n`+ `)!

.
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4.2. Cusped, complex hyperbolic 2-manifolds

In the case of n = 2, Theorem 4.3 says that VolS(B/G∞) ≥ 2/m. Moreover,
S. Hersonsky and F. Paulin proves that I2 = 6 (Proposition 5.8 in [2]), so
m ∈ {2, 3, 4, 6} because after a vertical projection, the order of the symmetry
of the Heisenberg lattice is the same as the plane lattice. That is, the number m
is just the order of the rotational symmetry of a lattice in C. It is the so-called
crystallographic restriction. Hence, Theorem 4.3 says that VolS(B/G∞) ≥ 1/3
when n = 2. But J. R. Parker improves this constant from 1/3 to 2/3.

Theorem 4.6 (Theorem 5.1 in [5]). Let G be a discrete, torsion-free, cofinite-
volume group of isometries of H2

C, q∞ a parabolic fixed point of G, and G∞ its
stabiliser in G. Let B be the canonical horoball based at q∞. Then

VolS(B/G∞) ≥ 2/3.

Corollary 4.7 (Corollary 5.2 in [5]). Let M be a complex hyperbolic 2-manifold
with k ends. Then VolS(M) ≥ 2k/3.

Remark 4.8. J.-M. Hwang’s result (Theorem 4.5) is better than J. R. Parker’s
one, too. When we set n = 2 in Theorem 4.5, we get VolS(M) ≥ 160

1323π
2k ≥

1.19 · k.
We will give a sketch of the proof of the above theorem ([5]). Let g be the

shortest vertical translation by t > 0 in G∞, and L a Heisenberg lattice. Then
Π(L) becomes a lattice in C. Suppose that τ has the shortest length among
all nontrivial elements of Π(L) and that σ has the shortest length among all
elements of Π(L) that are not real multiples of τ . Then {τ, σ} becomes a basis
for Π(L) and σ/τ is in the standard fundamental region for the modular group.
If we pullback the translations by τ and σ under Π, they become Heisenberg
translation in L by (τ, t

′
) and (σ, s

′
) for some t

′
, s
′ ∈ R. Then, as mentioned

in §2.2, their commutator is a vertical translation by 4Im(στ) = tp for some
p ∈ N.

Now we can calculate the volumes of canonical cusps of complex hyperbolic
manifolds. The area of a fundamental domain for Π(L) is Im(στ) = tp/4, so
by Lemma 4.2, we have

VolN(N/L) = 4tVolC(C/Π(L)) = 4t(tp/4) = t2p.

If we let L have index m in G∞,

VolN(N/G∞) = t2p/m.

Moreover, since the canonical horoball B has height

min{t, | |τ |2 + it/2 |},
by Lemma 4.1,

VolS(B/G∞) =
1

2u2
VolN(N/G∞) =

1
2u2

t2p

m
.
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As G is torsion-free, the canonical horoball has height u = t
2 , and so,

VolS(B/G∞) =
1

2u2

t2p

m
=

2p
m
.

If m = 2 or 3, then 2p/m ≥ 2/3. Since J. R. Parker proves the following
theorem, which says that if m = 4 or 6, then p 6= 1, 2p/m ≥ 2/3. This proves
the above theorem.

Theorem 4.9 (Proposition 5.5 in [5]). Let G be a discrete, torsion-free, cocom-
pact group of Heisenberg isometries. Suppose that G contains a screw-parabolic
map f whose rotational part has order m = 4 or 6. Let k be the shortest vertical
translation in G, and let g be a shortest translation in Π(G). Now [fgf−1, g]
is a vertical translation, and so [fgf−1, g] = k±p, where p is a positive integer.
Then p ≥ 2.

J. R. Parker proves this theorem using the following two lemmas.

Lemma 4.10 (Lemma 5.3 in [5]). Let G be a discrete, torsion-free group of
Heisenberg isometries containing the screw-parabolic map f with rotational part
of order m = 2, 3, 4, or 6. Let k, the vertical translation by t > 0, be the shortest
vertical translation in G. Then there is an integer a so that the screw-parabolic
map fk−a is also in G, has the same rotation multiplier as f , and has the
property that (fk−a)m = k±1. In other words, the translation length of fk−a

is ±t/m.

Lemma 4.11 (Lemma 5.4 in [5]). Let f be a screw-parabolic Heisenberg isom-
etry with axis (o, v) ⊂ N, rotation multiplier eiθ, and translation length a ∈ R.
Let g be the Heisenberg translation by (σ, s) ∈ N. Then gf is a screw-parabolic
map with axis (σ/(1− eiθ), v), rotational multiplier eiθ, and translation length
b = a+ s− | σ |2 sin θ/(1− cos θ).

Now we are ready to state the main result of the paper. It says that if m = 2,
then p must be even in the above situation.

Theorem 4.12 (Main result). Let G be a discrete, torsion-free, cocompact
group of Heisenberg isometries. Suppose that G contains a screw-parabolic
map f whose rotational part has order m = 2. Then p must be an even integer,
where p is defined as above.

Proof. By Lemma 4.10, we may assume thatG contains g, a Heisenberg transla-
tion by (σ, s) and f , a screw-parabolic with axis (o, v) ⊂ N, rotation multiplier
−1, and translation length a = ±t/2. We may also assume that G contains h,
a Heisenberg translation by (τ, s

′
) so that

[g, h] =




1 0 −σ∗τ + τ∗σ
0 1 0
0 0 1


 ,

which is a vertical translation by 4Im(στ) = 2i(στ − στ) = pt.



ON THE VOLUMES OF COMPLEX HYPERBOLIC MANIFOLDS 519

Since m = 2, Π(G∞) is a (2, 2, 2, 2)-group and order 2 elliptic conjugacy
classes are projections of f , gf , hf , and hgf . (See Section 5.5, Table 2 in
[6] and Section V. D. 9 in [4].) By Lemma 4.11, the translation length of gf
is b = a + s = ±t/2 + s and that of hf is c = a + s

′
= ±t/2 + s

′
. Since

(gf)2 is a vertical translation, 2b = ±t + 2s is an integer multiple of t, so
s = lt/2 for some integer l. But if l is an odd integer, the translation length
of gf is an integer of t, i.e., b = rt for some integer r. If we let k be the
shortest vertical translation in G, then (gf)k−r is a Heisenberg translation,
so G cannot be torsion free. Thus s = l

′
t. By applying a similar argument

to hf , we get that s
′

= l
′′
t. Furthermore, the translation length of hgf is

d = a + s + s
′ − pt/2 = ±t/2 + l

′
t + l

′′
t − pt/2 since hg is a Heisenberg

translation by (τ +σ, s
′
+s−pt/2). If p is an odd integer, then d = xt for some

integer x. This means that (hgf)k−x is a Heisenberg rotation, so G cannot be
torsion free. Therefore p must be an even integer. ¤

As mentioned above, if m = 4 or 6, then p 6= 1. The following theorem is a
generalization.

Theorem 4.13. Let G be a discrete, torsion-free, cocompact group of Heisen-
berg isometries. Suppose that G contains a screw-parabolic map f whose ro-
tational part has order m = 4 or 6. Let k be the shortest vertical translation
in G, and let g be a shortest translation in Π(G). Now [fgf−1, g] is a vertical
translation, and so [fgf−1, g] = k±p, where p is a positive integer. Then p
must be an even integer.

Proof. The proof is similar to that of Proposition 5.5 in [5]. Suppose that g
is a Heisenberg translation by (σ, s), the axis of f is (o, v) ⊂ N, the multi-
plier of f is e2iπ/m, and the translation length of f is a. Then fgf−1 is a
Heisenberg translation by (e2iπ/mσ, s), so [fgf−1, g] is a vertical translation by
4|σ|2 sin(2π/m) = pt (where t is the translation length of k). By Lemma 4.10,
we may assume that a = ±t/m = ±4|σ|2 sin(2π/m)/pm.

Suppose that m = 4, i.e., 4|σ|2 = pt. Then Π(G∞) is a (2, 4, 4)-triangle
group and the generators are f , gf , and gf2, where the orders are 4, 4, and 2,
respectively. (See Section 5.5, Table 2 in [6] and Section V. D. 9 in [4].) We
already know that f has a rotational multiplier e2πi/4 = i, and a translation
length a = ±t/4. Using Lemma 4.11, we get the rotational multipliers and
translation lengths of screw-parabolic maps gf and gf2. The generator gf has
a rotational multiplier i, and a translation length a+s−|σ|2 = ±t/4+s−pt/4.
On the other hand, gf2 has a rotational multiplier eπi = −1, and a translation
length 2a + s = ±t/2 + s. Since gf2 is order 2, 2(±t/2 + s) = ±t + 2s is an
integer multiple of t, so s = l′t/2 for some integer l

′
. But since G is torsion-

free, ±t/2+ s cannot be an integer multiple of t by the same argument used in
the proof of Theorem 4.12. Hence, l

′
must be an even integer, i.e., s = lt for

some integer l. If p is an odd integer, then the translation length of (gf)2 is
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2(±t/4 + s − pt/4) = ±t/2 + 2lt − pt/2 which is an integer multiple of t, and
that contradicts the fact that G is torsion-free. So p must be an even integer.

Now suppose that m = 6, i.e., 2|σ|√3 = pt. This proof is almost the same
as when m = 4. Then Π(G∞) is a (2, 3, 6)-triangle group and the generators
are f , gf2, and gf3, where the orders are 6, 3, and 2, respectively. (See
also Section 5.5, Table 2 in [6] and Section V. D. 9 in [4] as above.) We
already know that f has a rotational multiplier e2πi/6 = eπi/3, and a translation
length a = ±t/6. Using Lemma 4.11, we get the rotational multipliers and
translation lengths of screw-parabolic maps gf2 and gf3. The generator gf2

has a rotational multiplier e2πi/3, and a translation length 2a+ s− |σ|2/√3 =
±t/3 + s− pt/6. On the other hand, gf3 has a rotational multiplier eπi = −1,
and a translation length 3a+ s = ±t/2+ s. Since gf3 is order 2, 2(±t/2+ s) =
±t + 2s is an integer multiple of t, so s = l′t/2 for some integer l

′
. But since

G is torsion-free, ±t/2 + s cannot be an integer multiple of t. Hence s = lt for
some integer l, and since gf2 is of order 3, the translation length of (gf2)3 is
3(±t/3 + s − pt/6) = ±t + 3lt − pt/2 must be an integer multiple of t. Hence
p must be an even integer. ¤

4.3. One-ended, cusped, complex hyperbolic 2-manifolds

In this section, we deal with one-ended, cusped, complex hyperbolic 2-
manifolds. In this special case, J. R. Parker improves the above constant 2/3
in Theorem 4.6 to 1 in [5].

Theorem 4.14 (Theorem 6.1 in [5]). Let G be a discrete, torsion-free, cofinite-
volume group of isometries of H2

C, q∞ a parabolic fixed point of G, and G∞ its
stabiliser in G. Suppose that G∞ contains representatives for all the parabolic
conjugacy classes in G. Then there is a precisely invariant horoball B

′
based

at q∞ so that VolS(B
′
/G∞) ≥ 1.

The method of proof is as follows: Except for the cases m = 3, p = 1 and
m = 6, p = 2, VolS(B

′
/G∞) = 2p/m ≥ 1. So he considers these two cases

separately and finds larger horoballs that are precisely invariant under G∞ in
G.

If m = 3 and p = 1, the horoball of height t/3 is precisely invariant un-
der G∞ in G, so VolS(B

′
/G∞) = 3/2. For the second case, m = 6 and

p = 2, the horoball of height t/2
√

3 is precisely invariant under G∞ in G, so
VolS(B

′
/G∞) = 2.

Now, we get the following result as a corollary of our main result. This
corollary improves the constant 1 in the above theorem to 4/3.

Corollary 4.15 (Corollary of Theorem 4.12). Let G be a discrete, torsion-free,
cofinite-volume group of isometries of H2

C, q∞ a parabolic fixed point of G, and
G∞ its stabiliser in G. Suppose that G∞ contains representatives for all the
parabolic conjugacy classes in G. Then there is a precisely invariant horoball
B
′
based at q∞ so that VolS(B

′
/G∞) ≥ 4/3.
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Remark 4.16. When considering the volumes of complex hyperbolic manifolds
with only one cusp, not just a canonical cusp, J.-M. Hwang’s result in Theo-
rem 4.5 is still better than that of J. R. Parker in Theorem 4.14. But our result
4/3 is better than J.-M. Hwang’s result, at least in the one-cusped case.

Remark 4.17. In Theorem 4.14, equality holds only if m = 2 and p = 1, but
Theorem 4.12 excludes that case. Now to improve the estimate of Corollary 4.15
above, one needs only consider the following three cases: (m, p) = (3, 2), (4, 2),
and (6, 4).

Proof. 1) If m = 6, then by Theorem 4.13, p 6= 1, 3. Now by Theorem 4.14,
when p = 2, VolS(B

′
/G∞) = 2 ≥ 4/3. Clearly when p ≥ 4, VolS(B

′
/G∞) ≥

4/3.
2) If m = 4, then by Theorem 4.13, p 6= 1. Now when p = 2, we can prove

that VolS(B
′
/G∞) = 4/3 the way we proved Theorem 4.14. (See the last

remark in [5].) Clearly when p ≥ 3, VolS(B
′
/G∞) ≥ 4/3.

3) If m = 3 and p = 1, then by Theorem 4.14, VolS(B
′
/G∞) = 3/2 ≥ 4/3.

Now clearly, when p ≥ 2, VolS(B
′
/G∞) ≥ 4/3.

4) Ifm = 2, then by Theorem 4.12, p 6= 1. Now when p ≥ 2, VolS(B
′
/G∞) ≥

2. This completes the whole proof. ¤
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