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FIXED POINT THEORY FOR VARIOUS CLASSES OF
PERMISSIBLE MAPS VIA INDEX THEORY

Ravi P. AGARWAL AND DoONAL O’REGAN

ABSTRACT. In this paper we use degree and index theory to present new
applicable fixed point theory for permissible maps.

1. Introduction

In [16] we presented new fixed point theory for Urysohn type maps using
an argument based on constructing multivalued maps /C,,. In this paper we re-
move the maps IC,, and replace them with a more natural sequentially compact
condition. In particular we use degree and index theory to obtain applicable
fixed point theorems in Fréchet spaces. The proof relies on fixed point theory in
Banach spaces and viewing a Fréchet space as the projective limit of a sequence
of Banach spaces. Our final goal is to discuss permissible maps and to help us
achieve this we first discuss various subclasses of this class, namely the J maps
and more generally the admissible maps. One of the advantages of J maps is
that no knowledge of homology theory is needed to construct the index. Our
theory is partly motivated by the papers [1, 14, 15, 16].

Existence in Section 2 will rely on degree and index theory so we begin by
discussing the maps we will consider in this paper. In this paper we consider
maps with nonempty closed values. Let A be a compact subset of a metric space
X. A is called co—proximally connected in X if for every ¢ > 0 there isa § > 0
such that for any n = 1,2,..., and any map ¢ : A" — Ns(A) there exists
amap ¢ : A" — N.(A) such that g(z) = ¢'(z) for z € IA™; here A" is the
n—dimensional standard simplex and N.(A4) = {z € X : dist(z, 4) < e}. Let X
and Y be two metric spaces and F': X — 2¥. Wesay F € J(X,Y) if F is upper
semicontinuous with nonempty, compact, co—proximally connected values. If
Z is another metric space and F' € J(X,Y) with r : Z — X continuous, then
it is well known [11] that F or € J(Z,Y). In this paper we will also discuss a
special subclass of J maps, namely the Kututani maps. Let F': X — CK(Y);
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here CK(Y') denotes the family of nonempty compact convex subsets of Y. We
say F': X — CK(Y) is Kakutani if F' is upper semicontinuous.

Let © be a bounded open subset of a Banach space E and assume T : Q — 2F
is a Kakutani countably condensing map with 0 ¢ (I — T)(092). Then [17,
Chapter 2, 3, 11] guarantees that deg(I — T',,0) is well defined and has the
usual properties.

Next let 2 be an open subset of a Banach space E and assume T € J(Q, E)
is a compact map with 0 ¢ (I — T)(9€2). Then [6, p. 4868] guarantees that
deg(I — T,9Q,0) is well defined and has the usual properties. It is possible
to extend the degree for countably condensing J maps (see [3]). Let E be a
Banach space and €2 an open bounded subset of E. Also let T € J(2, E) be a
countably condensing map with 0 ¢ (I —T)(09). Let

A = (T @), Ap=20 (T N A1)

forn=2,3,..., and

As = ﬁ An.
n=1

Fix a retraction R: E — Ao,. If QN Ay = 0, we let the degree of I — T on
with respect to 0, denoted deg(I — T',,0), be zero. If QN Ay # ) we let

deg(I — T,U,Q,0) = deg(I — T o R,R™}(Q2),0),

where the right hand side is the Andres, Gabor, Gorniewicz degree.

Let C be a closed convex subset of a Banach space E and U an open bounded
subset of E. Assume T : W — 2¢ is a Kakutani countably condensing map
with x ¢ T x for x € OW; here W = UNC and in this situation W (respectively
OW) denotes the closure of W in C' (respectively the boundary of W in C).
Then (3, 9, 18] guarantees that ind(7, C, W) is well defined and has the usual
properties.

It is possible to extend the index for countably condensing J maps (see [3]).
Let C be a closed convex subset of a Banach space F and U an open bounded
subset of E. Assume T € J(W,C) is countably condensing map with x ¢ Tz
for x € OW where W =U N C. Let

Ay =@ (T (W), An =20 (T (WN A1)

forn=2,3,..., and

Fix a retraction R : E — Ay. If WN Ay = 0, we let ind(T,C, W) = 0. If
W N Ax # 0 we let

ind(T,C, W) = deg(I — T o R, R (U),0),
where the right hand side is the Andres, Gabor, Gorniewicz degree (see [6]).
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Also in Section 2 we discuss maps which arise from homology theory [9].
Let X and Y be metric spaces. A continuous single valued map p: ¥ — X is
called a Vietoris map [10] if the following two conditions are satisfied:

(i) for each = € X, the set p~1(x) is acyclic

(ii) p is a proper map, i.e., for every compact A C X we have that p~1(A)
is compact.

Let D(X,Y) be the set of all pairs X £ 7 %y, where p is a Vietoris map,
q is continuous and Z is a metric space.

Definition 1.1. A multifunction ¢ : X — C(Y) is admissible, and we write
¢ € Ad(X,Y), if ¢ : X — C(Y) is upper semicontinuous, and if there exists a
metric space Z and two continuous maps p: Z — X and ¢ : Z — Y such that
(i) p is a Vietoris map, and
(i) 6(z) = a(p(x)) for any = € X;
here C(Y) denotes the family of nonempty, compact subsets of Y.

Remark 1.1. (i) It should be noted that ¢ upper semicontinuous is redundant
in Definition 1.1.
(ii) (p,q) is called a selected pair of ¢ and we write (p,q) C ¢.

Let E be anormed space. Let A and C be two subsets of E. A pair A & Z %
C is called a countably condensing pair from A to C if « (q (p_l(Q))) < a(N)
for all countably bounded subsets Q of A with «(2) # 0 (here o denotes the
Kuratowski measure of noncompactness).

A pair (p,q) is called compact if ¢ is compact. Let U be an open subset
of a normed space E. By K(U, E) we mean the family of compact pairs (p, q)
from U to E for which Fix(p,q) N OU = 0 (recall that a pair (p,q) is from U
to E if there exists a metric space Z for which U & Z % E); here Fix(p, q) =
{x €U :x€qlpt(z))}. In 1976 Kucharski [13], using the coincidence index
in R™ and Schauder projections, defined the coincidence index on K(U, E) and
established the following result.

Theorem 1.1. There exists a map I : K(U,E) — Q (called the coincidence
index (degree)) which satisfies the following properties:

(I) if I(p,q) # O, then Fix(p, q) # 0;

(IT) 4f h : Z x [0,1] — E is a compact map such that Fix(p,h) NOU = 0,
then I(p,ho) = I(p, h1); here ho(y) = h(y,0), hi(y) = h(y,1) and Fix(p, h) =

{r eU:xeh(p~t(z)x {t}) for some t €[0,1]}.
Let E be a Banach space and U an open subset of E.

Definition 1.2. A pair U £ Z % Eis called a countably condensing pair
from U to E if a (¢ (p™'(2))) < () for all countably bounded subsets 2 of
U with a(Q) # 0.

Definition 1.3. (p,q) € M(U,E) if U is bounded and (p,q) is a countably

condensing pair from U to E with no fixed points on 9U (i.e., Fix(p,q) NOU =
0).
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Now let (p,q) € M(U, E). We showed in [2, 14] that we can associate with
each pair (p, ¢) a compact pair (p, ¢*) with

Fix(p, q) = Fix(p, ¢*)

(here of course Fix(p,q) = {x € U : x € q(p~*(z))}) and that we could define
(a well defined) coincidence index (degree) I(p,q) as

1(p,q) = I(p,q")
Theorem 1.2. If (p,q) € M(U,E) and I(p,q) # 0, then Fix(p,q) # 0.

Remark 1.2. If the pair in Definition 1.3 was condensing (see [4]) instead of

countably condensing then U bounded is not needed in the above argument
(see [4]).

Let E be a Banach space, U an open bounded subset of E and let ¢ €
Ad(U, E) be countably condensing with Fix¢ N OU = (); here Fix¢ = {x €
U:z € ¢(x)} and ¢ is called countably condensing if there exists a selected
pair (p, q) of ¢ which is countably condensing. We define the coincidence index
(degree) I(¢,U) by putting

I(p,U) ={I(p,q) : (p,q) C ¢ such that (p,q) is P-concentrative};

note Fix¢ = Fix(p, q).

If I(¢,U) # {0}, then Fix¢ # 0. To see this note if I(¢, U) # {0}, then there
exists a selected pair (p, ¢) of ¢ which is countably condensing with I(p, q) # 0.
Then Theorem 1.5 guarantees that Fix(p,q) # 0 and so Fix¢ # 0.

Finally in Section 2 we discuss permissible maps. Let X and Y be Haus-
dorff topological spaces. We say F : X — 2V (here 2¥ denotes the family of
nonempty subsets of V) is locally compact if for every € X there exists a
neighborhood U of x such that the restriction F|y : U — 2Y is compact. Now
if F:X — 2% welet F*(z) = F(F" (z)).

Definition 1.4. Let F : X — 2% be upper semicontinuous, 2 € X and A C X.
We say A attracts z if for each neighborhood U of A there is a n € {1,2,...}
with F™(z) C U. Also we say A is an attractor for F if it attracts all points
in X. Now we say the map F is of compact attraction if it has a compact
attractor and is locally compact.

Definition 1.5. A multivalued map F : X — 2Y is in the class A,,(X,Y) if
(i) F is continuous, and (ii) for each x € X the set F(z) consists of one or m
acyclic components; here m is a positive integer. We say F is of class Ay(X,Y)
if F' is upper semicontinuous and for each x € X the set F'(x) is acyclic.

Definition 1.6. A decomposition (F,..., F},) of a multivalued map F : X —
2Y is a sequence of maps

F F. F. Fn_1 Fy
X:X0—1>X1—2>X2—3>"' = Xn1 = X, =Y,
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where F; € A, (X;-1,X;), F = F,0---0F;. One can say that the map
F' is determined by the decomposition (Fi, ..., F,). The number n is said to
be the length of the decomposition (F1,...,F,). We will denote the class of
decompositions by D(X,Y).

Definition 1.7. An upper semicontinuous map F : X — 2Y is permissible
provided it admits a selector G : X — 2¥ which is determined by a decompo-
sition (G1,...,G,) € D(X,Y). We denote the class of permissible maps from
X into Y by P(X,Y).

Let X be a closed convex subset of a normed space E and let F : X — 2%
be a permissible map which is of compact attraction. Let U be an open subset
of X with FixF NoU = (). Then the index i(X, F,U) is well defined (see [8, p.
42] or see [10, Sections 50-53]) and has the usual properties ([8, p. 43]).

Now let I be a directed set with order < and let {F,}acr be a family of
locally convex spaces. Foreach o € I, 3 € I for whicha < Blet 1y g : Eg — E,
be a continuous map. Then the set

{x = (zq) € H Ey:xq =7 p(xg)Va, €l a< ﬂ}
ael

is a closed subset of [[,.; Eo and is called the projective limit of {Eq}aer

and is denoted by lim. E, (or lim_{E,, 7y g} or the generalized intersection

NacrEa (12, p. 439].)

2. Fixed point theory in Fréchet spaces

Let E = (E,{| - |n}nen) be a Fréchet space with the topology generated by
a family of seminorms {|- |, : n € N}; here N = {1,2,...}. We assume that
the family of seminorms satisfies

(2.1) lz|1 <zl < x|z < --- for every x € E.

A subset X of E is bounded if for every n € N there exists r, > 0 such that
|z|, < rp for all z € X. For r > 0 and « € E we denote B(z,r) = {y €
E :|lz—ylp, <r¥n € N}. To E we associate a sequence of Banach spaces
{(En, |- |n)} described as follows. For every n € N we consider the equivalence
relation ~,, defined by

(2.2) & ~y, y if and only if |z — yl, = 0.

We denote by E" = (E/~y,,| - |n) the quotient space, and by (E,,| - |,) the
completion of E™ with respect to | - |,, (the norm on E™ induced by |- |, and
its extension to E,, are still denoted by |- |,). This construction defines a
continuous map p, : E — E,. Now since (2.1) is satisfied the seminorm | - |,
induces a seminorm on E,, for every m > n (again this seminorm is denoted by
|- |n). Also (2.2) defines an equivalence relation on E,, from which we obtain
a continuous map iy m : By — B, since E,, /~, can be regarded as a subset
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of E,. Now fin mfbm ik = pink if n <m < Kk and py = pipmpbm if n <m. We
now assume the following condition holds:

(2.3) for each n € N, there exists a Banach space (Ey,| - |»)
’ and an isomorphism (between normed spaces) j, : E, — F,.

Remark 2.1. (i) For convenience the norm on E,, is denoted by | - |,.

(ii) In our applications E,, = E™ for each n € N.

(iii) Note if z € E,, (or E™), then = € E. However if € E,,, then x is not
necessarily in E and in fact E, is easier to use in applications (even though
E,, is isomorphic to E,,). For example if E = C[0, o), then E™ consists of the
class of functions in E which coincide on the interval [0, n] and E,, = C[0,n].

Finally we assume

{ E, D Ey;D--- and for each n € N,

2.4 . o
( ) |jnﬂn,n+1]n.|l_1$|n S ‘x|n+lvx S En+1

(here we use the notation from [12], i.e., decreasing in the generalized sense).
Let lim. E,, (or N$°E,, where N5° is the generalized intersection [12]) denote
the projective limit of {E,}nen (note Ty m = Jutnmim: @ Bm — B for
m > n) and note lim. E,, & E, so for convenience we write £ = lim._ F,,.
For each X C F and each n € N we set X, = joun(X), and we let X,
intX,, and 0X,, denote respectively the closure, the interior and the boundary
of X,, with respect to |- |, in E,. Also the pseudo-interior of X is defined by

pseudo — int(X) = {x € X : joun(z) € X,,\0X,, for every n € N}.

The set X is pseudo-open if X = pseudo — int(X). For r > 0 and x € E,, we
denote B, (z,r) ={y € E, : |xr —y|l, <7}

We now show how easily one can extend fixed point theory in Banach spaces
to applicable fixed point theory in Fréchet spaces. In this case the map F,, will
be related to F' by the closure property (2.10).

Theorem 2.1. Let E and E, be as described above, X a bounded subset of
E and F: Y — 2F where intX,, C Y, for each n € N. Also for eachn € N
assume there exists F, : intX,, — 2% and suppose the following conditions are
satisfied:

(2.5) for eachn € N, F,, : intX,, — CK(E,) is a
’ upper semicontinuous countably condensing map,

(2.6) for each m € N,0 ¢ (I — F,)(0intX,,),

(2.7) for each n € N,deg(I — F,,,intX,,,0) # 0,

(2.8) for eachn € {2,3,...} ify € intX,, solvesy € F,y in E,,
’ then jrpik nint(y) € int Xy for k€ {1,...,n— 1},
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for any sequence {yn }nen with y, € intX,,
and y, € Fpy, in B, forn € N and
for every k € N there exists a subsequence

(2.9) Ne C{k+1,k+2,...}, N C Ny for
ke{1,2,...}, No= N, and a z € int Xy with
Jetkndn t(Yn) — 2 in Ex as n — oo in N,
and

if there exists a w € Y and a sequence {yYn }nen
with y, € int X, and y, € FLy, in E, such that
(2.10) for every k € N there exists a subsequence S C
{k+1,k+2,...} of N with jrprniy " (Yn) — jrir(w)
in By asn — oo in S, then w € Fw in E.
Then F has a fixed point in E.

Remark 2.2. Notice to check (2.9) we need to show that for each k € N the
sequence {Jjx itk nin  (Yn)tnen,_, C intX} is sequentially compact.

Proof. For each n € N (note X, is bounded since X is bounded for if y € X,
then there exists a @ € X with y = j,u,(z)) there exists y, € intX, with
Yn € Fpyp in E,,. Lets look at {y, }nen. Notice y; € intX; and jl,ul’kjkfl(yk) IS
intX; for k € {2,3,...}. Now (2.9) with &k = 1 guarantees that there exists a
subsequence Ny C {2,3,...} and a z; € intX; with jip1 7, (yn) — 21 in B as
n — oo in Ni. Look at {yn tnen,. Now jouiz njn t(yn) € intXs for k € Ni. Now
(2.9) with & = 2 guarantees that there exists a subsequence Ny C {3,4,...}
of Ny and a 2o € intXs with jops nj, '(yn) — 22 in Ey as n — oo in No.
Note from (2.4) and the uniqueness of limits that jlulﬁgjgle = z1 in F since
Ny C Ny (note j1ft1.ndn  (Yn) = 11,275 “datta iy (yn) for n € Ny). Proceed
inductively to obtain subsequences of integers

NyDNoD-- Ny C{k+1,k+2,..}

and 2z, € intXy with jrpknint(yn) — 2k in Ex as n — oo in Ni. Note
jkuk7k+1jgilzk+1 =z, in By, for k € {1,2, .. }
Fix k € N. Note
2 = jkﬂk,k+1jlz_&12k+1 = jk#k,k+1j;;_:1jk+1/ik+1,k+2j];}2Zk+2
= jkuk,k+2jk_i2zk+2 == klemdm Zm = ThomZm

for every m > k. We can do this for each k € N. As a result y = (2x) €
lim. F, = E and also note y € Y since 2z € intX, C Yj for each k € N.
Also since y,, € Foy, in E, for n € Ny, and jipik njn  (yn) — 2 =y in Ey as
n — oo in Nj we have from (2.10) that y € Fy in E. O

Remark 2.3. From the proof we see that condition (2.8) can be removed from
the statement of Theorem 2.1. We include it only to explain condition (2.9)
(see Remark 2.2).



254 RAVI P. AGARWAL AND DONAL O’'REGAN

Remark 2.4. Note we could replace intX,, C Y, above with intX,, a subset
of the closure of Y,, in E, if Y is a closed subset of E (so in this case we
can take Y = X if X is a closed subset of E). To see this note z; € intXy,
y = (2;) € lim E, = E and 7 (ym) — 2 in Ex as m — oo and we can
conclude that y € Y = Y (note ¢ € Y if and only if for every k € N there
exists (zg.m) €Y, Thm = Thn(Tn,m) for n >k with ©g., — jepw(q) in Ey as
m — 00).

Remark 2.5. Suppose in Theorem 2.1 we replace (2.9) with

for any sequence {yn tnen with y,, € intX,
and y, € F,y, in E, forn € N and

for every k € N there exists a subsequence

N C {k‘—‘r 1,]€+2,...},Nk C Ni_1 for
ke{l,2,...},No =N, and a z; € intX;, with
Jelkndn t(Yn) — 2k in Ej as n — oo in Ny.

(2.9)*

In addition we assume F : Y — 2F with intX,, C Y, for each n € N is replaced
by F : X — 2% and suppose (2.10) is true with w € Y replaced by w € X.
Then the result in Theorem 2.1 is again true.

The proof follows the reasoning in Theorem 2.1 except in this case zj € int Xy,
and y € X.

Remark 2.6. In fact we could replace (in fact we can remove it as mentioned
in Remark 2.3) (2.8) in Theorem 2.1 with

{ for each n € {2,3,...} if y € intX,, solves y € F,y in E,,

(2.8) then jipg nin*(y) € intXy, for k€ {1,...,n— 1}

and the result above is again true.

Remark 2.7. Usually in our applications we have 80X, = dintX, (so X,, =
intX,). If X is a pseudo-open subset of E, then for each n € N we have X,,
is a open subset of E, so intX,, = X,,. To see this note X, C E\@Xn since
if y € X,,, then there exists z € X with y = j,u,(z) and this together with
X = pseudo — intX yields j,pun(2) € X,,\0X,, i.e., y € X,\0X,. In addition
notice
X,\0X,, = (intX, UdX,)\0X, = intX,\0X, = intX,
since intX,, N 0X,, = (. Consequently
X, C X,,\0X,, = intX,, so X, = intX,.

Note also if F,, is compact (or condensing) in (2.5), then the assumption that
X is bounded can be removed in Theorem 2.1.

The result in Theorem 2.1 clearly extends to countably condensing J maps.

Theorem 2.2. Let E and E,, be as described above, X a bounded subset of
E and F : Y — 2F where intX,, C Y, for each n € N. Also for each n € N
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assume there exists I, : intX,, — 2P and suppose the following condition is
satisfied:

(2.11)

for eachn € N, F,, € J(intX,,, E,)
s a countably condensing map.

Also assume (2.6), (2.7), (2.8), (2.9) and (2.10) hold. Then F' has a fized point
mn B,

Next we present some results using fixed point index.

Theorem 2.3. Let E and E,, be as described in the beginning of Section 2, C' a
convex subset in E, U a pseudo-open bounded subset of E and F : Y — 2F with
YCE, and W,, =U, NC, CY, for eachn € N (here W,, = U, N C,). Also
for each n € N assume there exists F,, : W,, — 2 and suppose the following
conditions are satisfied:

(2.12) for eachn € {2,3,...} if y € W, solves y € Fpy in E,,
) then Jkuk,njftl(y) GWk fOT’ke {17"'77171}7
(2.13) for eachn € N, F,, € J(W,,C,,)
’ s a countably condensing map,
(2.14) for eachm € N,x ¢ Fpx for x € OW,
’ (here OW,, denotes the boundary of W, in C,,),
(2.15) for each n € N,ind(F,, C,,, W,,) # 0,
for any sequence {yn}nen with y, € W,
and Yy, € Frpy, in E, forn € N and
(2.16) for every k € N there exists a subsequence
’ ng{k—l—l,]{:—l—Z,...},NkgNkflfOT
ke{1,2,...},Ng =N, and a z, € W}, with
Jrbkendn H(Yn) — 2k in By as n — oo in Ny,
and

if there exists a w € Y and a sequence {yn tnen
with y, € Wy, and y, € Fry, in E, such that

(2.17) for every k € N there exists a subsequence S C
{k+1,k+2,...} of N with jrpsniy ' (Yn) — jrir(w)
in By asn — oo in S, then w € Fw in E.

Then F has a fized point in E.
Proof. Fix n € N. Note from Remark 2.7 that U,, = intU,,. We now show
(2.18) C,, is convex.

To see this let 2,9 € p,(C) and A € [0,1]. Then for every z € p, (%) and
y € p, 1 (§) we have Az + (1 —\)y € C since C is convex and so AZ + (1 —\)j =
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AMin(x) + (1 — Npn(y). It is easy to check that A, (z) + (1 — Npn(y) =
tn(Az + (1 — N)y) so as a result

Xo 4 (1= N)j = in(Az + (1= N)y) € ia(C),
and so fi,(C) is convex. Now since j, is linear we have Cj, = j,(un(C)) is
convex and as a result C,, is convex, so (2.18) holds.

Now there exists ¥, € U,, N C,, with y,, € F,,y, in E,,. Essentially the same
reasoning as in Theorem 2.1 establishes the result. O

Remark 2.8. Condition (2.12) can be removed from the statement of Theo-
rem 2.3.

Remark 2.9. In Theorem 2.3 it is possible to replace C, NU, C Y, with
C, NU, a subset of the closure of Y, in E, provided Y is a closed subset

of £ so in this case we could have Y = C'N U if C,, NU,, is a subset of the
closure of j,u,(CNU) in F, and if C is closed.

Remark 2.10. Suppose in Theorem 2.3 we replace (2.16) with

for any sequence {y, tnen with y, € W,
and y, € F,y, in B, forn € N and

for every k € N there exists a subsequence
Ny C {k‘—l— 1,k—|—2,...},Nk C Ni_4 for
ke{1,2...},Ng =N, and a z, € Wy with
Jebkendnt (Yn) — 2 in Ej as n — oo in Ny,

(2.16)*

In addition we assume F : Y — 2F with W,, C Y, for each n € N is replaced
by F:Y — 2F with W,, CY,, for each n € N. Then the result in Theorem 2.3
is again true.

We now use the index theory for admissible maps in Section 1 to obtain
applicable fixed point theory in Fréchet spaces.

Theorem 2.4. Let E and E, be as described above, X a bounded subset of
E and F: Y — 2F where intX,, C Y, for each n € N. Also for each n € N
assume there exists F,, : intX,, — 2E and suppose (2.8) and the following
conditions are satisfied:

(2.19) for each n € N, F,, € Ad(intX,,, E,,) is countably condensing,

(2.20) for each n € N,FixF,, N dintX,, = 0,
and
(2.21) for each n € N,I(F,,intX,) # {0}.

Also assume (2.9) and (2.10) hold. Then F has a fized point in E.

Proof. For each n € N there exists (see Theorem 1.2) y,, € intX,, with y,, €
F,y.. Now essentially the same reasoning as in Theorem 2.1 guarantees the
result. (]
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Remark 2.11. Note Remark 2.3, Remark 2.4, Remark 2.5 and Remark 2.6 hold
in this situation also.

Finally we discuss permissible maps.

Theorem 2.5. Let E and E, be as described in the beginning of Section 2, C
a convex subset in E, U a pseudo-open bounded subset of E and F : Y — 2F
with Y C E, and C,, C Y, (or W,, = U, NC,, CY,) for each n € N (here
W, = U, NC,). Also for each n € N assume there exists F,, : C,, — 25" and
suppose (2.12) and the following conditions are satisfied:

(2.22) for eachn € N, F,, € P(C,,C,)
’ 18 of compact attraction,
(2.23) for eachn € N,z ¢ F,x for x € OW,
’ (here OW,, denotes the boundary of W, in C,),
and
(2.24) for each n € N,ind(F,, C,,, W,,) # {0}

Also assume (2.16) and (2.17) hold. Then F has a fized point in E.

Proof. Fix n € N. Note from Remark 2.7 that U, = intU,, and from Theo-
rem 2.3 we know C, is convex. Now there exists y,, € U, N C,, with y, € F,,yn
in E,,. Essentially the same reasoning as in Theorem 2.1 establishes the re-
sult. O

Remark 2.12. Condition (2.12) can be removed from the statement of Theo-
rem 2.5.

Remark 2.13. In Theorem 2.5 it is possible to replace C,, C Y,, (or W,, C Y,,)
with C), a subset of the closure of Y,, in E,, (or W,, a subset of the closure of
Y, in E,,) provided Y is a closed subset of E.

Remark 2.14. Suppose in Theorem 2.5 we replace (2.16) with (2.16)*. In ad-
dition we assume F : Y — 2F with C,, C Y, (or W,, CY,,) for each n € N is
replaced by F : Y — 2F with C,, C Y, (or W,, CY,,) for each n € N. Then
the result in Theorem 2.5 is again true.

Remark 2.15. One could write the result in Theorem 2.5 with P replaced by
J(A)€ using the index theory from [7] (this has the advantage that no knowledge
of homology theory is needed to construct the index).

As an application of our fixed point results we conclude the paper by apply-
ing Theorem 2.1 to the integral inclusion

(2.95) y(t) € /0 " K (t, $)F(s,y(s))ds for ¢ € [0, 00).

Here K : [0,00) X [0,00) — R and F : [0,00) x R — CK(R) with CK(R)
denoting the family of nonempty, convex, compact subsets of R.



258 RAVI P. AGARWAL AND DONAL O’'REGAN

Theorem 2.6. Let 1 < p < oo be a constant and 1 < q < oo the conjugate to
p. Suppose the following conditions are satisfied:

(2.26) for each t € [0,00), the map s+ K(t,s) is measurable,

(2.27) sup (/ |K(t,s)|qu> "< 00,
0

te[0,00)

(2.28) { SO IK @ s) — K(t,5)|%ds — 0 as t — ¢

for each t' € [0, 00),

F:[0,00) x R — CK(R) is a LP-Carathéodory function:
by this we mean

(a) for each measurable u : [0,00) — R, the map

x +— F(x,u(x)) has measurable single valued selections
(2.29) (b) for a.e. z € [0,00), the map u— F(x,u) is

upper semicontinuous

(c) for each r > 0 there exists h, € LP[0, 00) with
|F(z,y)| < he(x) for a.e. x €[0,00) and ally € R

with |y| < r; here |F(x,y)| = sup{|v| : v € F(x,y)},

there exists a function 1) : [0,00) — [0,00) continuous
and nonincreasing and a ¢ € LP[0,00) with

(230) [F(s,)| < o(s)i(lo]) for ally € R and
a.e. s €[0,00),
and
(2.31) { Ir > 0 with r > Kololb(r) where
K, = SUPte(0,00) fo |K(t,s)|p(s)ds.

Then (2.26) has at least one solution in C[0,00).

Remark 2.16. Note (2.29)(a) could be replaced by: the map z — F(x,u) is
measurable for all u € R.

Proof. Here E = ([0,00), E* consists of the class of functions in E which
coincide on the interval [0, k], Ey = C|0, k] with of course 7 m = Jntnmim' :
E,, — E, defined by 7, m(x) = x|j,,). We will apply Theorem 2.1 with

X ={ueC[0,00) : |u|, <r for each n € N};

here |ul, = sup¢g ) [u(?)[- Fix n € N and note
X=X, ={uecC0,n]: |ul, <r}
with
intX,, = {u e Cl0,n] : |ul, <r}.

Let n

Foy(t) = / K(t,s)F(s,y(s))ds for t € [0, n]

0



FIXED POINT THEORY FOR VARIOUS CLASSES 259

and
Fy(t) = /0 K(t,s)F(s,y(s))ds for t € [0, 00).

Now let K, : LP[0,n] — C[0,n] and F,, : C[0,n] — L?[0, n| be given by

(1) = / " K(t, s)y(s)ds

Fo(y) ={u € LP[0,n] : u(t) € F(t,y(t)) for a.e. t € [0,n]}.

Also let Y = X (we will use Remark 2.4). Clearly (2.8) holds and a standard
argument in the literature guarantees that

and

F, =K, oF,:intX, — CK(E,) is upper semicontinuous and compact,
0 (2.5) holds. To show (2.6) and (2.7) we fix n € N and show
(2.32) y & A,y for A € [0,1] and y € dintX,,.

If (2.32) holds, then clearly (2.6) is satisfied and (2.7) follows from the homotopy

property of the degree. Now suppose there exists y € dintX,, (i.e., |y|, = r)

and A € [0,1] with y € AF,y. Since it is well known in the literature that
Fnly) # 0 there exists v € F,(y) with

)\/Kts s)ds for t € [0,n].

In addition (2.30) guarantees that |v(s)| < ¢(s)¥(Jy(s)|) for a.e. s € [0, n], and
so for ¢ € [0,n] we have

O] < o (lyl) / " Kt 5)]o()ds < o (Iyl) Ko

Consequently
yln <9 (Jyln) K1,

so r < 9(r)Ky, a contradiction. To show (2.9) consider a sequence {y,}nen
with y, € C[0,n], yp € Fpoyn, on [0,n] and |y,|, < r. Now to show (2.9)
we will show for a fixed k € N that {jxpr iy’ (Un)}nes C intXy is sequen-
tially compact for any subsequence S of {k,k + 1,...}. Note for n € S that
Ikt ndn (Yn) = Ynlow 50 {Jkttkndn  (Yn)}nes is uniformly bounded since
[Ynln < 7 for n € S implies |yn|x < 7 for n € S. Also {jxpknin ' (Yn)tnes
is equicontinuous on [0, k] since for n € S and t,x € [0,%] (note there exists
h, € LP[0,00) with |F(s,y,(s))] < h.(s) for a.e. s € [0,n]) we have

|jk,ufk,njr;1(yn(t)) - jkﬂk,njgl(yn (.’E))|
/0 |K(t,s) — K(x,s)|h.(s)ds

([ mtoras)

IN

(/OOO IK(t,s) — K(x, s)qu) 3’

=

IN
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The Arzela-Ascoli theorem guarantees that {jxiknin’(Yn)tnes C intXy is
sequentially compact, so (2.9) holds. Finally we show (2.10). Suppose there
exists w € C[0,00) and a sequence {y, }nen with y, € intX,, and y, € F,y,
in C[0,n] such that for every k € N there exists a subsequence S C {k+ 1,k +
2,...} of N with y, — w in C[0,k] as n — oo in S. If we show

w(t) € /OOO K(t,s)F(s,w(s))ds for t € [0, 00),

then (2.10) will hold. The argument presented below follows closely that in
[5]. Fix t € [0,00). Consider k > ¢t and n € S (as described above). Then
Yn(t) € Fryn(t), t € [0,n], for n € S. Now there exists v, € F,(yn) with

yn(z) = /0” K (z, s)v,(s)ds for z € [0,n],
and so
k n
(2.33) n(t) — /O K (L, 5)0n(3)ds = /k K(t, s)on(s)ds.

Now (2.29) guarantees that there exists a h, € LP[0,00) with |v,(s)| < hy(s)
for a.e. s € [0,n]. Then

() — /O K (t, $)om(s)ds| < /k " ($) K (1, 5)|ds

and so

k
(2.34) yn(t) — /0 K(t, 5)vn(s)ds

< /k ho(3)| K (1, )| ds.

Consider {v, }nes. A standard result from the literature guarantees that Fj :
C[0, k] — LP[0, k] is upper semicontinuous with respect to the weak topology
(w—u.s.c.) and also weakly completely continuous. Now since v,, € Fy,(y,,) for
n € S, there exists a uy € LP[0,k] and a subsequence of S (without loss of
generality assume its S) with v, converging weakly to uj (i.e., v, — ug in
L?[0,k]) as n — oo in S. Now y, — w in C[0,k] and v, — uy in LP[0, k]
as n — oo in S together with v, € Fi(y,) for n € S and the fact that
Fi : C[0, k] — LP[0, k] is w—u.s.c. guarantees

(2.35) up € Fr(w).

Note as well that |w|p < 7 since |yp|r < r for n € S, and also we have
lug(x)] < h.(z) for a.e. x € [0,k]. Let n — oo through S in (2.34) to obtain

k
(2.36) w(t)f/o K(t, s)uk(s)ds

< /k h.(8)|K(t,s)|ds.

Similarly we can show that there exists ugy1 € LP[0, k + 1] and a subsequence
of S, say Sy, with v, — wgy; in LP[0,k + 1] as n — oo in S; and with
Ugt1 € Fry1(w). Of course this implies v, — ug41 in LP[0, k] as n — oo in Sy
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s0 ugt1(x) = ug(z) for a.e. x € [0,k]. In addition note |ugi1(z)| < h(z)
for a.e. = € [0,k + 1]. Continue and construct uyi2, Ugys,.... For [ €
{k,k+1,...} = P let uj (z) be any extension to [0, cc0) of ; with |u}(z)| < h,(z)
for a.e. x € (I,00). Also let

Fi(w) = {velLP0,0):v(x)e F(z,w(z)) for a.e. z €[0,]],
[v(x)] < hy(z) for a.e. x € [0,00)}.

Now {u] }iep is a weakly compact sequence in LP[0, 0o) so there exists a subse-
quence which converges weakly to a function u € L?[0, c0). Note u(z) = ug(x)
for a.e. x € [0, k] since ugim(z) = uk(x) for a.e. x € [0, k], here m € Ny. This
together with (2.36) yields

k o
(2.37) w(t)—/o K(t, s)u(s)ds §/k h(8)|K(t, s)|ds.

Let
F(w) ={v e LP[0,00) : v(z) € F(z,w(x)) for a.e. z € [0,00)}
(note |w|p < r for each k € Ny so w € BC[0,00)). We next claim that
F(w) = Mieny Fi (w) (and F(w) is nonempty, closed and convex). Note first
SUPieo,00) [W(H)| < 7 50 |[F(z,w(2))| < hy(z) for ae. @ € [0,00). Let wy, be the
restriction to the interval [0, k], k € N, of w. Note that
Fr(wy) ={v € LP[0,k] : v(x) € F(x,wk(z)) for a.e. z € [0,k]}
is closed in L?[0, k| for all k € Ny. Let
Fr(wg) = {veLP0,00):v € Frx(wy) for z € [0, k]
and v(z) =0 for x > k}.
It is immediate that F} (wy) is a closed set in LP[0, c0) for each k € Ny. Let
R, = {veLP[0,00):v(x)=0for z €[0,k],
[v(x)] < h(z) for a.e. z € (k,00)}
and notice it is clear that
Fr(w) = Fp(wr) @ Ry.
It is immediate that F}(w) is a closed set in LP[0,00). Also for each k € Ny
we have F(w) C Fj(w) and so
Fw) € () F(w).
lENy

On the other hand if v € F}(w) for each | € Ny then v(z) € F(z,w(zx)) for a.e.
x € [0,00) and so

M Fi(w) € Fluw).

IS
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Thus F(w) = Mien, F; (w) and also F(w) is a closed subset of L”[0, 00). Thus
our claim is established. Now since u belongs to Nien, F; (w) (note for each
l € Ny, u € Ff(w)) we have u € F(w). Let k — oo in (2.37) to obtain

/Kts 5)ds

€ /000 K(t,s)F(s,w(s))ds.

Thus (2.10) holds. Our result now follows from Theorem 2.1 (with Remark 2.4).
(I

and so
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