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CERTAIN TRINOMIAL EQUATIONS
AND LACUNARY POLYNOMIALS

Seon-Hong Kim

Abstract. We estimate the positive real zeros of certain trinomial equa-
tions and then deduce zeros bounds of some lacunary polynomials.

1. Introduction and statement of results

Many of classical inequalities of analysis have been obtained from trinomial
equations, and there have been a number of literatures about zero distributions
of trinomial equations and lacunary polynomials. See, for example, [1], [2], [3]
and [4]. In this paper, we investigate positive real zeros distributions of certain
trinomial equations and, using this, we estimate zeros bounds for some lacunary
polynomials. While studying these, we will need a new generalized upper bound
of the exponential function: for 0 ≤ x < 1 and 1 ≤ n ≤ 2 we have

(1) ex ≤ U(n, x) = 1− 1
n

+
1
n

(
1 +

(
1− 1

n

)
x

1− x
n

)n

≤ 1
1− x

,

where U(1, x) = 1
1−x . For the details about this, see [5]. The first result

about trinomial equations follows from the lemma below that will be proved in
Section 2.

Lemma 1. Let n be an integer ≥ 4, and

(2)
1
2n

< a ≤ 1
4(n− 1)

.
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Suppose that the polynomial

Pn,a(x) =
(
a

1
n−1 − a

1
n + 8n− 4

)
x4 − 4

(
a

1
n−1 + 4n2 − 2n− 1

)
x3

+ 4
(
a

1
n−1 (4n2 − 8n + 5) + 8n2 − 12n + 4

)
x2

− 16
(
1 + 2a

1
n−1

)
(n− 1)2x + 16a

1
n−1 (n− 1)2

has all its zeros real, namely d1 < d2 < d3 < d4. Write c = a−
1
n − 1,

e1 =
(c + 1)− (c + 1)1−

n
2
√

(c + 1)n − 4(n− 1)
2(n− 1)

and

e2 =
(c + 1) + (c + 1)1−

n
2
√

(c + 1)n − 4(n− 1)
2(n− 1)

.

Then
(a) if

a1/n < x < 1− 1
en−1

and
d1 < x < d2 or 1− a1/ne2 < x < 1− a1/ne1,

then xn − xn−1 < −a, and
(b) if

a1/n < x < 1− 1
en−1

and

x > 1− a or x <
a

1
n

(
a−

1
n − 1

) 1
n−1

,

then xn − xn−1 > −a.

The following theorem is a consequence of Lemma 1.

Theorem 2. With the same assumptions as in Lemma 1, the polynomial
u(x) = xn − xn−1 + a has exactly two positive zeros on (0, 1) which are not
located in

a1/n < x < 1− 1
en−1

, d1 < x < d2, 1− a1/ne2 < x < 1− a1/ne1,

and

a1/n < x < 1− 1
en−1

, x > 1− a, x <
a

1
n

(
a−

1
n − 1

) 1
n−1

.

Using (a) of Lemma 1, we get zeros bounds for some lacunary polynomials
in Theorem 3 below that will be also proved in Section 2. In the proof of
Theorem 3, we will consider u(x) in Theorem 2 as a polynomial of degree n+1
so that u(x) = xn+1 − xn + a.
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Theorem 3. Let, for n positive integer, P (z) = anzn +an−kzn−k + · · ·+a1z+
a0 ∈ C[z], with an 6= 0 and k ≥ 1, and

H = max
0≤j≤n−k

|aj |.

Suppose that the polynomial Pn+1,a(x) (in Lemma 1) has all its zeros real,

namely d′1 < d′2 < d′3 < d′4. Suppose that c =
(

H
|an|

)− 1
n+1 − 1,

e
′
1 =

(c + 1)− (c + 1)1−
n+1

2
√

(c + 1)n+1 − 4n

2n
,

e
′
2 =

(c + 1) + (c + 1)1−
n+1

2
√

(c + 1)n+1 − 4n

2n
.

Then if
1

2n+1
<

(
H

|an|
)
≤ 1

4n
,

then P (z) does not have a zero on

d′1 < |z| < d′2,

and

1−
(

H

|an|
) 1

n+1

e
′
2 < |z| < min

{
1, 1−

(
H

|an|
) 1

n+1

e
′
1

}
.

2. Proofs and examples

In this section, we prove Lemma 1 and Theorem 3, and give some examples
for Theorems 2 and 3. We first show Lemma 1.

Proof of Lemma 1. The polynomial u(x) = xn−xn−1+a has the critical points
0 and n−1

n . Since a ≤ 1
4(n−1) < (n−1)n−1

nn , we have u
(

n−1
n

)
= a− (n−1)n−1

nn < 0.
It follows from u(0) = u(1) = a > 0 that u(x) has exactly two positive zeros
on (0, 1). Also u(a1/n) = 2a− a(n−1)/n > 0 since a > 1/2n, and

a1/n <
(n− 1)

n−1
n

n
<

n− 1
n

.

So the positive zeros of u(x) are greater than a1/n, and so we assume that

a1/n < x < 1.

We first want to find x such that

xn−1 >
a

1− x

to prove the case (a). This is equivalent to

(n− 1) log x > log a + log
1

1− x
,
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and

(3) x > a
1

n−1 exp
{

1
n− 1

log
1

1− x

}
.

By (1),

ex ≤ U(2, x)
(
≤ 1

1− x

)
(0 ≤ x < 1).

Since log 1
1−x < n− 1, i.e., (a1/n <)x < 1− 1

en−1 , the inequality (3) is fulfilled
if

x >
a

1
n−1

(
4(n− 1)2 + log2 1

1−x

)

(
2n− 2− log 1

1−x

)2 .

Since 2n− 2 > log 1
1−x , the above is again satisfied if

(4) x >

a
1

n−1

(
4(n− 1)2 +

(
x + x2

2(1−x)

)2
)

(
2n− 2− x− x2

2(1−x)

)2

since

log
1

1− x
< x +

x2

2(1− x)
.

Multiply both numerator and denominator of the right side of (4) by 4(1−x)2

so that we get

x5 −
(
a

1
n−1 + 8n− 4

)
x4 − 4

(
a

1
n−1 + 4n2 − 2n− 1

)
x3

+ 4
(
a

1
n−1 (4n2 − 8n + 5) + 8n2 − 12n + 4

)
x2

− 16
(
1 + 2a

1
n−1

)
(n− 1)2x + 16a

1
n−1 (n− 1)2 > 0.

Since x > a1/n, we have x5 > x4 · a1/n. So the above is fulfilled if

(5) Pn,a(x) < 0,

where Pn,a(x) was given in the statement of this lemma. If Pn,a(x) has all its
zeros real, namely d1 < d2 < d3 < d4, (5) holds when

d1 < x < d2 and a1/n < x < 1− 1
en−1

.

Suppose that u(x) < 0 for x real and a1/n < x < 1− 1
en−1 , i.e.,

(6) xn − xn−1 < −a.

Let
b = a−

1
n and x = a

1
n y.

Since 1
2n < a < 1

4(n−1) , we have

(4(n− 1))1/n < b < 2.
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But 1 < n

(n−1)
n−1

n

≤ (4(n− 1))1/n, and so

1 < b < 2.

Now (6) becomes

(7) yn − byn−1 < −1,

and since a1/n < x < 1− 1
en−1 , we get

1 < y < a−
1
n

(
1− 1

en−1

)
.

Let b = c + 1 (and so 0 < c < 1). Put y = 1− z. Then

1− a−1/n

(
1− 1

en−1

)
< z < 0,

and since c = a−1/n − 1,

0 < a−1/n 1
en−1

= 1− a−1/n

(
1− 1

en−1

)
+ (a−1/n − 1) < z + c < c.

By (7) we have

(8) (1− z)n−1(z + c) > 1.

Put t = z + c > 0 in (8). Then 0 < t < c and

t(c + 1− t)n−1 > 1.

This is satisfied if

(9) t
(
(c + 1)n−1 − t(c + 1)n−2(n− 1)

)
> 1.

In fact, this follows from the inequality
(

1− t

c + 1

)n−1

> 1− (n− 1)
t

c + 1
,

and so

(c + 1− t)n−1 > (c + 1)n−1

(
1− (n− 1)

t

c + 1

)

=(c + 1)n−1 − t(n− 1)(c + 1)n−2.

Solving the inequality (9) in t = z + c gives

e1 < t < e2,

where

e1 =
(c + 1)− (c + 1)1−

n
2
√

(c + 1)n − 4(n− 1)
2(n− 1)

and

e2 =
(c + 1) + (c + 1)1−

n
2
√

(c + 1)n − 4(n− 1)
2(n− 1)

.
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The above e1 and e2 are real because (c + 1)n = a−1 ≥ 4(n− 1). Hence

e1 − c < z < e2 − c.

The corresponding bounds for x = a1/n(1− z) are

1− a1/ne2 < x < 1− a1/ne1.

We now turn to the case (b). Starting with xn − xn−1 > −a we get

(10) (1− z)n−1(z + c) < 1

instead of (8) by using same method above. This inequality holds if one of the
following two conditions is satisfied:

a−
n−1

n (z + c) < 1, i.e., z < a
n−1

n − a−
1
n + 1,(11)

(1− z)n−1c < 1, i.e., z > 1− 1
(
a−

1
n − 1

) 1
n−1

.(12)

In fact, if (11) holds, then z + c < a
n−1

n and so

(1− z)n−1(z + c) = yn−1(z + c) = a−
n−1

n xn−1(z + c) < a−
n−1

n a
n−1

n = 1.

Also if (12) holds, then (1− z)n−1 < 1/c and so

(1− z)n−1(z + c) < 1/c(z + c) = z/c + 1 < 1.

The corresponding bounds for x = a1/n(1− z) are either

x > 1− a or x <
a

1
n

(
a−

1
n − 1

) 1
n−1

,

which completes the proof of (b). ¤

Theorem 2 is immediately obtained from Lemma 1. The following is an
example about Theorem 2.

Example 4. It follows from Theorem 2 that u(x) = x8 − x7 + 0.004 has
the positive real zeros on (0.50191 · · · , 0.51103 · · · ) ∪ (0.855046 · · · , 0.86126) ∪
(0.995881 · · · , 0.999088). Now the actual positive real zeros are 0.501982 · · ·
and 0.995883 · · · .

For the proof of Theorem 3, we will use (a) of Lemma 1.

Proof of Theorem 3. We checked xn+1 − xn + a = 0, where 1
2n+1 < a ≤ 1

4n ,
has two positive zeros on (0, 1) in the proof of Lemma 1 (Here we replace n by
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n + 1). For |z| < 1,

|P (z)| ≥ |an||z|n −
(|an−k||z|n−k + |an−k−1||z|n−k−1 + · · ·+ |a0|

)

≥ |an||z|n −H

(
1− |z|n−k+1

1− |z|
)

> |an||z|n −H

(
1

1− |z|
)

= |an|
−

(
|z|n+1 − |z|n + H

|an|
)

1− |z|
> 0

The (a) in Lemma 1 completes the proof. ¤
We end this paper by giving an example of Theorem 3.

Example 5. For the polynomial P (z) = z7 + 0.004z6 + 0.004z5 + 0.004z4 +
0.004z3 + 0.004z2 + 0.004z + 0.004, our result asserts that P (z) does not have
a zero on

0.51103 · · · ≤ |z| ≤ 0.85504 · · · ,

0.86126 · · · ≤ |z| ≤ 0.99588 · · ·
using computer algebra. Actual zeros of P (z) are located on

0.43185 · · · ≤ |z| ≤ 0.48696 · · · .
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