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CONVERGENCE THEOREMS FOR SET-VALUED
DENJOY-PETTIS INTEGRABLE MAPPINGS

Chun-Kee Park

Abstract. In this paper, we introduce the Denjoy-Pettis integral of
set-valued mappings and investigate some properties of the set-valued
Denjoy-Pettis integral. Finally we obtain the Dominated Convergence
Theorem and Monotone Convergence Theorem for set-valued Denjoy-
Pettis integrable mappings.

1. Introduction

Saks [11] introduced the Denjoy integral of real-valued functions which is a
natural extension of the Lebesgue integral. Gordon [8] introduced the Denjoy-
Pettis integral of Banach-valued functions in terms of the Denjoy integral which
is the Denjoy extension of Pettis integral. The notion of integral of set-valued
mappings is very useful in many branches of mathematics like mathematical
economics, control theory, convex analysis, etc. It has been introduced by many
authors and in different ways. Several types of integrals of set-valued mappings
were introduced and studied by Aumann [1], Cascales and Rodriguez [2], De-
breu [3], Di Piazza and Musial [4, 5], El Amri and Hess [6], Papageoriou [10]
and others.

In this paper, we introduce the Denjoy-Pettis integral of set-valued map-
pings and investigate some properties of the set-valued Denjoy-Pettis integral.
Finally we obtain two convergence theorems for set-valued Denjoy-Pettis inte-
grable mappings.

2. Preliminaries

Throughout this paper, L denotes the family of all Lebesgue measurable
subsets of [a, b] and X a Banach space with dual X∗. The closed unit ball of X∗

is denoted by BX∗ . CL(X) denotes the family of all nonempty closed subsets
of X, C(X) the family of all nonempty closed convex subsets of X, CB(X)
the family of all nonempty closed bounded convex subsets of X, CWK(X)
the family of all nonempty convex weakly compact subsets of X and CK(X)
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the family of all nonempty convex compact subsets of X. Note that if X is
reflexive, then CWK(X) = CB(X).

For A ⊆ X and x∗ ∈ X∗, let s(x∗, A) = sup{x∗(x) : x ∈ A}, the support
function of A.

For A,B ∈ CL(X), let H(A,B) denote the Hausdorff metric of A and B
defined by

H(A,B) = max
(

sup
a∈A

d(a,B), sup
b∈B

d(b, A)
)

,

where d(a,B) = infb∈B ‖a− b‖ and d(b, A) = infa∈A ‖a− b‖. Especially,

H(A,B) = sup
‖x∗‖≤1

|s(x∗, A)− s(x∗, B)|

whenever A, B are convex sets. The number ‖A‖ is defined by ‖A‖ = H(A,
{0}) = supx∈A ‖x‖. If A ∈ CB(X) and x∗1, x

∗
2 ∈ X∗, then

|s(x∗1, A)− s(x∗2, A)| ≤ ‖x∗1 − x∗2‖‖A‖.
Note that (CWK(X), H) is a complete metric space.
The mapping F : [a, b] → CL(X) is called a set-valued mapping. F is said to

be scalarly measurable if for every x∗ ∈ X∗, the real-valued function s(x∗, F (·))
is measurable. F is said to be measurable if F−1(A) = {t ∈ [a, b] : F (t) ∩ A 6=
φ} ∈ L for every A ∈ CL(X).

Let F : [a, b] → CL(X). Then the following statements are equivalent [10]:
(1) F : [a, b] → CL(X) is measurable;
(2) F−1(U) = {t ∈ [a, b] : F (t) ∩ U 6= φ} ∈ L for every open subset U of X;
(3) (Castaing representation) there exists a sequence {fn} of measurable

functions fn : [a, b] → X such that F (t) = cl{fn(t)} for all t ∈ [a, b].

If F : [a, b] → CL(X) is measurable then F : [a, b] → CL(X) is scalarly
measurable. Let X be a separable Banach space. Then F : [a, b] → CWK(X)
is measurable if and only if F : [a, b] → CWK(X) is scalarly measurable [6].

f : [a, b] → X is called a selection of F : [a, b] → CL(X) if f(t) ∈ F (t) for
all t ∈ [a, b].

Definition 2.1 ([8]). Let F : [a, b] → X and let E ⊆ [a, b].
(a) The function F is said to be absolutely continuous on E (F is AC on

E) if for each ε > 0 there exists δ > 0 such that
∑n

i=1 ‖F (di) − F (ci)‖ < ε
whenever {[ci, di] : 1 ≤ i ≤ n} is a finite collection of non-overlapping intervals
that have endpoints in E and satisfy

∑n
i=1(di − ci) < δ.

(b) The function F is said to be generalized absolutely continuous on E (F
is ACG on E) if F is continuous on E and E can be expressed as a countable
union of sets on each of which F is AC.

Definition 2.2 ([8]). Let F : [a, b] → X and let t ∈ (a, b). A vector z in X
is called the approximate derivative of F at t if there exists a measurable set
E ⊆ [a, b] that has t as a point of density such that lim s→t

s∈E

F (s)−F (t)
s−t = z. We

will write F ′ap(t) = z.
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A function f : [a, b] → R is said to be Denjoy integrable on [a, b] if there
exists an ACG function F : [a, b] → R such that F ′ap = f almost everywhere

on [a, b]. In this case, we write
∫ b

a
f(t)dt = F (b)− F (a).

The function f is Denjoy integrable on a set A ⊆ [a, b] if fχA is Denjoy
integrable on [a, b]. In this case, we write

∫
A

f(t)dt =
∫ b

a
fχA(t)dt.

Definition 2.3 ([8]). A function f : [a, b] → X is said to be Denjoy-Pettis inte-
grable on [a, b] if for each x∗ ∈ X∗ the function x∗f is Denjoy integrable on [a, b]
and if for every subinterval [c, d] of [a, b] there exists a vector x[c,d] ∈ X such
that x∗(x[c,d]) =

∫ d

c
x∗f(t)dt for all x∗ ∈ X∗. In this case, the vector x[a,b] is

called the Denjoy-Pettis integral of f on [a, b] and is denoted by (DP )
∫ b

a
f(t)dt.

The function f : [a, b] → X is Denjoy-Pettis integrable on a set A ⊆ [a, b]
if the function fχA is Denjoy-Pettis integrable on [a, b]. In this case, we write
(DP )

∫
A

f(t)dt = (DP )
∫ b

a
fχA(t)dt.

Theorem 2.4 ([13]). Let A ∈ C(X). Then the support function s(·, A)

(1) is positively homogeneous, i.e., s(λx∗, A) = λs(x∗, A) for all λ ≥ 0 and
x∗ ∈ X∗;

(2) is a convex function on X∗;
(3) is weak∗ lower semi-continuous on X∗.

Conversely, if a function ϕ : X∗ → [−∞, +∞] satisfies the conditions (1)-
(3), then there exists an A ∈ C(X) such that ϕ(x∗) = s(x∗, A) for each x∗ ∈
X∗. The set A is unique and given by A = {x ∈ X : x∗(x) ≤ ϕ(x∗) for all x∗ ∈
X∗}.
Theorem 2.5 ([13]). If An ∈ CWK(X) for each n ∈ N and limn→∞ s(x∗, An)
exists for each x∗ ∈ X∗, then there exists an M > 0 such that supn∈N ‖An‖ ≤
M .

3. Results

In this section, we introduce the Denjoy-Pettis integral of set-valued map-
pings and obtain some properties of the Denjoy-Pettis integral.

Definition 3.1. A set-valued mapping F : [a, b] → CWK(X) is said to be
Denjoy-Pettis integrable on [a, b] if for each x∗ ∈ X∗ s(x∗, F (·)) is Denjoy
integrable on [a, b] and for every subinterval [c, d] of [a, b] there exists W[c,d] ∈
CWK(X) such that

(1) s(x∗,W[c,d]) =
∫ d

c

s(x∗, F (t))dt

for each x∗ ∈ X∗. We write W[c,d] = (DP )
∫ d

c
F (t)dt.
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Note that when a set-valued mapping is a function f : [a, b] → X, then the
set W[c,d] is reduced to vector in X and the equality (1) turns into

x∗(W[c,d]) =
∫ d

c

x∗f(t)dt

for each x∗ ∈ X∗. In this case, the function f : [a, b] → X is Denjoy-Pettis
integrable on [a, b].

The following two theorems follow easily from the properties of the Denjoy
integral and the support function.

Theorem 3.2. Let F : [a, b] → CWK(X) and c ∈ (a, b). Then
(1) if F is Denjoy-Pettis integrable on [a, b], then F is Denjoy-Pettis inte-

grable on every subinterval of [a, b];
(2) if F is Denjoy-Pettis integrable on [a, c] and [c, b], then F is Denjoy-

Pettis integrable on [a, b] and

(DP )
∫ b

a

F (t)dt = (DP )
∫ c

a

F (t)dt + (DP )
∫ b

c

F (t)dt.

Theorem 3.3. Let F : [a, b] → CWK(X) and G : [a, b] → CWK(X) be
Denjoy-Pettis integrable on [a, b] and λ ≥ 0. Then

(1) F + G is Denjoy-Pettis integrable on [a, b] and

(DP )
∫ b

a

{F (t) + G(t)} dt = (DP )
∫ b

a

F (t)dt + (DP )
∫ b

a

G(t)dt;

(2) λF is Denjoy-Pettis integrable on [a, b] and

(DP )
∫ b

a

λF (t)dt = λ(DP )
∫ b

a

F (t)dt.

Theorem 3.4. Let f : [a, b] → X be Denjoy-Pettis integrable on [a, b] and
F : [a, b] → CWK(X) and G : [a, b] → CWK(X) be Denjoy-Pettis integrable
on [a, b]. Then

(1) if f(t) ∈ F (t) a.e., then

(DP )
∫ b

a

f(t)dt ∈ (DP )
∫ b

a

F (t)dt;

(2) if F (t) ⊆ G(t) a.e., then (DP )
∫ b

a
F (t)dt ⊆ (DP )

∫ b

a
G(t)dt;

(3) if F (t) = G(t) a.e., then (DP )
∫ b

a
F (t)dt = (DP )

∫ b

a
G(t)dt.

Proof. (1) Since f : [a, b] → X is Denjoy-Pettis integrable on [a, b], for each
x∗ ∈ X∗ x∗f is Denjoy integrable on [a, b] and

∫ b

a

x∗f(t)dt = x∗((DP )
∫ b

a

f(t)dt).
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If f(t) ∈ F (t) a.e., then for each x∗ ∈ X∗

x∗((DP )
∫ b

a

f(t)dt) =
∫ b

a

x∗f(t)dt

≤
∫ b

a

s(x∗, F (t))dt

= s(x∗, (DP )
∫ b

a

F (t)dt).

Since (DP )
∫ b

a
F (t)dt ∈ CWK(X), by the separation theorem

(DP )
∫ b

a

f(t)dt ∈ (DP )
∫ b

a

F (t)dt.

(2) If F (t) ⊆ G(t) a.e., then for each x∗ ∈ X∗
∫ b

a

s(x∗, F (t))dt ≤
∫ b

a

s(x∗, G(t))dt

and so

s(x∗, (DP )
∫ b

a

F (t)dt) ≤ s(x∗, (DP )
∫ b

a

G(t)dt).

Since (DP )
∫ b

a
F (t)dt, (DP )

∫ b

a
G(t)dt ∈ CWK(X), by the separation theorem

(DP )
∫ b

a

F (t)dt ⊆ (DP )
∫ b

a

G(t)dt.

(3) The proof is similar to (1). ¤
Theorem 3.5. Let X be a separable Banach space. If F : [a, b] → CWK(X)
is Denjoy-Pettis integrable on [a, b], then F : [a, b] → CWK(X) is measurable
on [a, b].

Proof. If F : [a, b] → CWK(X) is Denjoy-Pettis integrable on [a, b], then
s(x∗, F (·)) is Denjoy integrable on [a, b] and so s(x∗, F (·)) is measurable on
[a, b] for each x∗ ∈ X∗ by [9, Theorem 15.8]. Thus F : [a, b] → CWK(X) is
scalarly measurable on [a, b]. Hence F : [a, b] → CWK(X) is measurable on
[a, b]. ¤

F : [a, b] → CL(X) is said to be Denjoy integrably bounded on [a, b] if there
exists a Denjoy integrable real-valued function h on [a, b] such that for each
t ∈ [a, b], ‖x‖ ≤ h(t) for all x ∈ F (t).

Theorem 3.6. Let X be a separable Banach space. If F : [a, b] → CWK(X)
and G : [a, b] → CWK(X) are Denjoy integrably bounded and Denjoy-Pettis
integrable on [a, b], then H(F,G) is Denjoy integrable on [a, b] and

H

(
(DP )

∫ b

a

F (t)dt, (DP )
∫ b

a

G(t)dt

)
≤

∫ b

a

H(F (t), G(t))dt.
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Proof. Since F and G are measurable, there exist Castaing representations
{fn} and {gn} for F and G. Since fn and gn are measurable for all n ∈ N,

H(F (t), G(t)) = max
(

sup
n≥1

inf
k≥1

‖fn(t)− gk(t)‖, sup
n≥1

inf
k≥1

‖gn(t)− fk(t)‖
)

is measurable. Since F and G are Denjoy integrably bounded on [a, b], there
exist Denjoy integrable real-valued functions h1 and h2 such that for each
t ∈ [a, b], ‖x‖ ≤ h1(t) for all x ∈ F (t) and ‖x‖ ≤ h2(t) for all x ∈ G(t).
Since h1 and h2 are nonnegative and Denjoy integrable on [a, b], h1 and h2 are
Lebesgue integrable on [a, b]. Hence we have

H(F (t), G(t)) ≤ H(F (t), {0}) + H(G(t), {0}) ≤ h1(t) + h2(t)

for each t ∈ [a, b]. Therefore H(F, G) is Lebesgue integrable on [a, b] and so
H(F, G) is Denjoy integrable on [a, b]. Hence we have

H

(
(DP )

∫ b

a

F (t)dt, (DP )
∫ b

a

G(t)dt

)

= sup
‖x∗‖≤1

∣∣∣∣∣s(x
∗, (DP )

∫ b

a

F (t)dt)− s(x∗, (DP )
∫ b

a

G(t)dt)

∣∣∣∣∣

= sup
‖x∗‖≤1

∣∣∣∣∣
∫ b

a

s(x∗, F (t))dt−
∫ b

a

s(x∗, G(t))dt

∣∣∣∣∣

≤ sup
‖x∗‖≤1

∫ b

a

|s(x∗, F (t))− s(x∗, G(t))|dt

≤
∫ b

a

sup
‖x∗‖≤1

|s(x∗, F (t))− s(x∗, G(t))|dt

=
∫ b

a

H(F (t), G(t))dt.
¤

Theorem 3.7. Let X be a reflexive and separable Banach space and let Fn :
[a, b] → CWK(X) be a Denjoy-Pettis integrable set-valued mapping for each
n ∈ N and let F : [a, b] → CWK(X) be a set-valued mapping such that
limn→∞H(Fn(t), F (t)) = 0 on [a, b]. If there exists a Denjoy integrable func-
tion h on [a, b] such that ‖Fn(t)‖ ≤ h(t) on [a, b] for each n ∈ N, then
F : [a, b] → CWK(X) is Denjoy-Pettis integrable on [a, b] and

lim
n→∞

H

(
(DP )

∫ b

a

Fn(t)dt, (DP )
∫ b

a

F (t)dt

)
= 0.

Proof. Since Fn : [a, b] → CWK(X) is Denjoy-Pettis integrable on [a, b] for
each n ∈ N, for each n ∈ N, s(x∗, Fn(·)) is Denjoy integrable on [a, b] for each
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x∗ ∈ X∗ and for every subinterval [c, d] of [a, b] there exists (DP )
∫ d

c
Fn(t)dt ∈

CWK(X) such that

s(x∗, (DP )
∫ d

c

Fn(t)dt) =
∫ d

c

s(x∗, Fn(t))dt

for each x∗ ∈ X∗. Since limn→∞H(Fn(t), F (t)) = limn→∞ sup‖x∗‖≤1 |s(x∗,
Fn(t)) − s(x∗, F (t))| = 0 on [a, b], limn→∞ |s(x∗, Fn(t)) − s(x∗, F (t))| = 0
on [a, b] for each x∗ ∈ BX∗ and so x∗ ∈ X∗. Thus limn→∞ s(x∗, Fn(t)) =
s(x∗, F (t)) on [a, b] for each x∗ ∈ X∗. For each n ∈ N, |s(x∗, Fn(t))| ≤
sup‖x∗‖≤1 |s(x∗, Fn(t))| = H(Fn(t), {0}) = ‖Fn(t)‖ ≤ h(t) on [a, b] for each
x∗ ∈ BX∗ . Hence |s(x∗, Fn(t))| ≤ ‖x∗‖h(t) on [a, b] for each x∗ ∈ X∗. Since
h is Denjoy integrable on [a, b], ‖x∗‖h is Denjoy integrable on [a, b] for each
x∗ ∈ X∗. By the Dominated Convergence Theorem for the Denjoy integral, for
each x∗ ∈ X∗, s(x∗, F (·)) is Denjoy integrable on [a, b] and for every subinterval
[c, d] of [a, b]

lim
n→∞

∫ d

c

s(x∗, Fn(t))dt =
∫ d

c

s(x∗, F (t))dt.

Let [c, d] be any subinterval of [a, b]. We define a function ϕ : X∗ → R
by ϕ(x∗) =

∫ d

c
s(x∗, F (t))dt. Then ϕ is positively homogeneous and convex.

Now we prove that ϕ is continuous on X∗. (DP )
∫ d

c
Fn(t)dt ∈ CWK(X) for

each n ∈ N and limn→∞ s(x∗, (DP )
∫ d

c
Fn(t)dt) = limn→∞

∫ d

c
s(x∗, Fn(t))dt =∫ d

c
s(x∗, F (t))dt exists for each x∗ ∈ X∗. By Theorem 2.5 there exists an

M > 0 such that supn∈N
∥∥∥(DP )

∫ d

c
Fn(t)dt

∥∥∥ ≤ M . For each ε > 0 let δ = ε/M .
If x∗1, x

∗
2 ∈ X∗, ‖x∗1 − x∗2‖ < δ, then

|ϕ(x∗1)− ϕ(x∗2)| =
∣∣∣∣∣
∫ d

c

s(x∗1, F (t))dt−
∫ d

c

s(x∗2, F (t))dt

∣∣∣∣∣

= lim
n→∞

∣∣∣∣∣
∫ d

c

s(x∗1, Fn(t))dt−
∫ d

c

s(x∗2, Fn(t))dt

∣∣∣∣∣

= lim
n→∞

∣∣∣∣∣s(x
∗
1, (DP )

∫ d

c

Fn(t)dt)− s(x∗2, (DP )
∫ d

c

Fn(t)dt)

∣∣∣∣∣

≤ lim
n→∞

‖x∗1 − x∗2‖
∥∥∥∥∥(DP )

∫ d

c

Fn(t)dt

∥∥∥∥∥
≤ M‖x∗1 − x∗2‖
< Mδ = ε.

Thus ϕ is continuous on X∗. By Theorem 2.4 there exists W[c,d] ∈ C(X) such

that ϕ(x∗) = s(x∗,W[c,d]) for each x∗ ∈ X∗. Since |ϕ(x∗)| =
∣∣∣
∫ d

c
s(x∗, F (t))dt

∣∣∣
< ∞ for each x∗ ∈ X∗, W[c,d] ∈ CB(X) by the Resonance Theorem. Since
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X is reflexive, W[c,d] ∈ CWK(X) and s(x∗,W[c,d]) = ϕ(x∗) =
∫ d

c
s(x∗, F (t))dt

for each x∗ ∈ X∗. Hence F : [a, b] → CWK(X) is Denjoy-Pettis integrable on
[a, b] and W[c,d] = (DP )

∫ d

c
F (t)dt.

Since limn→∞H(Fn(t), F (t)) = 0 on [a, b], for each ε > 0 and t ∈ [a, b] there
exists N ∈ N such that n ≥ N ⇒ H(Fn(t), F (t)) < ε. For some n ∈ N with
n ≥ N ,

‖F (t)‖ = H(F (t), {0}) ≤ H(F (t), Fn(t)) + H(Fn(t), {0})
< ‖Fn(t)‖+ ε ≤ h(t) + ε.

Since ε > 0 is arbitrary, ‖F (t)‖ ≤ h(t) on [a, b], i.e., F : [a, b] → CWK(X)
is Denjoy integrably bounded on [a, b]. By Theorem 3.6 H(Fn, F ) is Denjoy
integrable on [a, b] and

H

(
(DP )

∫ b

a

Fn(t)dt, (DP )
∫ b

a

F (t)dt

)
≤

∫ b

a

H(Fn(t), F (t))dt

for each n ∈ N. By the Dominated Convergence Theorem for the Denjoy
integral we have

lim
n→∞

H

(
(DP )

∫ b

a

Fn(t)dt, (DP )
∫ b

a

F (t)dt

)
≤ lim

n→∞

∫ b

a

H(Fn(t), F (t))dt = 0.

Thus

lim
n→∞

H

(
(DP )

∫ b

a

Fn(t)dt, (DP )
∫ b

a

F (t)dt

)
= 0.

¤

Let Fn : [a, b] → CWK(X) be a set-valued mapping for each n ∈ N. The
sequence {Fn} is said to be monotone increasing (resp. monotone decreasing)
if for each n ∈ N Fn(t) ⊆ Fn+1(t) (resp. Fn(t) ⊇ Fn+1(t)) for all t ∈ [a, b]. The
sequence {Fn} is said to be monotone if it is monotone increasing or monotone
decreasing.

Theorem 3.8. Let X be a reflexive and separable Banach space and let {Fn} be
a monotone sequence of Denjoy-Pettis integrable CWK(X)-valued mappings on
[a, b] and let F : [a, b] → CWK(X) be a set-valued mapping such that H(F1, F )
is bounded and limn→∞H(Fn(t), F (t)) = 0 on [a, b]. If limn→∞(DP )

∫ b

a
Fn(t)dt

∈ CWK(X), then F : [a, b] → CWK(X) is Denjoy-Pettis integrable on [a, b]
and

lim
n→∞

H

(
(DP )

∫ b

a

Fn(t)dt, (DP )
∫ b

a

F (t)dt

)
= 0.

Proof. Assume that {Fn} is a monotone increasing sequence of Denjoy-Pettis
integrable CWK(X)-valued mappings on [a, b]. The proof is similar when
{Fn} is a monotone decreasing sequence of Denjoy-Pettis integrable CWK(X)-
valued mappings on [a, b]. Since Fn : [a, b] → CWK(X) is Denjoy-Pettis
integrable on [a, b] for each n ∈ N, for each n ∈ N, s(x∗, Fn(·)) is Denjoy
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integrable on [a, b] for each x∗ ∈ X∗ and for every subinterval [c, d] of [a, b]
there exists (DP )

∫ d

c
Fn(t)dt ∈ CWK(X) such that

s(x∗, (DP )
∫ d

c

Fn(t)dt) =
∫ d

c

s(x∗, Fn(t))dt

for each x∗ ∈ X∗. Since limn→∞H(Fn(t), F (t)) = limn→∞ sup‖x∗‖≤1 |s(x∗,
Fn(t)) − s(x∗, F (t))| = 0 on [a, b], limn→∞ |s(x∗, Fn(t)) − s(x∗, F (t))| = 0
on [a, b] for each x∗ ∈ BX∗ and so x∗ ∈ X∗. Thus limn→∞ s(x∗, Fn(t)) =
s(x∗, F (t)) on [a, b] for each x∗ ∈ X∗. Since {Fn} is a monotone increas-
ing sequence of Denjoy-Pettis integrable CWK(X)-valued mappings on [a, b],
{s(x∗, Fn(·))} is a monotone increasing sequence of Denjoy integrable func-
tions on [a, b] for each x∗ ∈ X∗. Let limn→∞(DP )

∫ b

a
Fn(t)dt = W , where

W ∈ CWK(X). Then

lim
n→∞

H

(
(DP )

∫ b

a

Fn(t)dt,W

)

= lim
n→∞

sup
‖x∗‖≤1

∣∣∣∣∣s(x
∗, (DP )

∫ b

a

Fn(t)dt)− s(x∗,W )

∣∣∣∣∣

= lim
n→∞

sup
‖x∗‖≤1

∣∣∣∣∣
∫ b

a

s(x∗, Fn(t))dt− s(x∗,W )

∣∣∣∣∣ = 0.

Hence limn→∞
∫ b

a
s(x∗, Fn(t))dt = s(x∗,W ) for each x∗ ∈ BX∗ and so x∗ ∈

X∗. Since W ∈ CWK(X), s(x∗,W ) is finite for each x∗ ∈ X∗. Thus
limn→∞

∫ b

a
s(x∗, Fn(t))dt is finite for each x∗ ∈ X∗. Since {Fn} is monotone in-

creasing on [a, b], {s(x∗, Fn(·))−s(x∗, F1(·)} is a monotone increasing sequence
of nonnegative Denjoy integrable functions on [a, b] for each x∗ ∈ X∗. Hence
for each subinterval [c, d] of [a, b]

lim
n→∞

∫ d

c

{s(x∗, Fn(t))− s(x∗, F1(t)}dt

≤ lim
n→∞

∫ b

a

{s(x∗, Fn(t))− s(x∗, F1(t)}dt

= lim
n→∞

∫ b

a

s(x∗, Fn(t))dt−
∫ b

a

s(x∗, F1(t))dt

for each x∗ ∈ X∗. Since limn→∞
∫ b

a
s(x∗, Fn(t))dt is finite for each x∗ ∈ X∗, for

each subinterval [c, d] of [a, b], limn→∞
∫ d

c
s(x∗, Fn(t))dt is also finite for each

x∗ ∈ X∗. By the Monotone Convergence Theorem for the Denjoy integral, for
each x∗ ∈ X∗, s(x∗, F (·)) is Denjoy integrable on [a, b] and for every subinterval
[c, d] of [a, b]

lim
n→∞

∫ d

c

s(x∗, Fn(t))dt =
∫ d

c

s(x∗, F (t))dt.
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Using the same method as in the proof of Theorem 3.7, we obtain that
F : [a, b] → CWK(X) is Denjoy-Pettis integrable on [a, b]. Since Fn and F are
measurable on [a, b], H(Fn, F ) is measurable on [a, b] for each n ∈ N. Since
{Fn} is monotone increasing on [a, b] and limn→∞ s(x∗, Fn(t)) = s(x∗, F (t)) on
[a, b] for each x∗ ∈ X∗,

H(Fn(t), F (t)) = sup
‖x∗‖≤1

|s(x∗, Fn(t))− s(x∗, F (t))|

≥ sup
‖x∗‖≤1

|s(x∗, Fn+1(t))− s(x∗, F (t))|

= H(Fn+1(t), F (t))

on [a, b] for each n ∈ N. In particular, H(Fn(t), F (t)) ≤ H(F1(t), F (t)) on [a, b]
for each n ∈ N. Since H(F1, F ) is bounded on [a, b], H(Fn, F ) is Lebesgue
integrable and so Denjoy integrable on [a, b] for each n ∈ N. Hence we have

H

(
(DP )

∫ b

a

Fn(t)dt, (DP )
∫ b

a

F (t)dt

)

= sup
‖x∗‖≤1

∣∣∣∣∣s(x
∗, (DP )

∫ b

a

Fn(t)dt)− s(x∗, (DP )
∫ b

a

F (t)dt)

∣∣∣∣∣

= sup
‖x∗‖≤1

∣∣∣∣∣
∫ b

a

s(x∗, Fn(t))dt−
∫ b

a

s(x∗, F (t))dt

∣∣∣∣∣

≤ sup
‖x∗‖≤1

∫ b

a

|s(x∗, Fn(t))− s(x∗, F (t))|dt

≤
∫ b

a

sup
‖x∗‖≤1

|s(x∗, Fn(t))− s(x∗, F (t))|dt

=
∫ b

a

H(Fn(t), F (t))dt

for each n ∈ N. By the Monotone Convergence Theorem for the Denjoy integral
we have

lim
n→∞

H

(
(DP )

∫ b

a

Fn(t)dt, (DP )
∫ b

a

F (t)dt

)
≤ lim

n→∞

∫ b

a

H(Fn(t), F (t))dt = 0.

Thus

lim
n→∞

H

(
(DP )

∫ b

a

Fn(t)dt, (DP )
∫ b

a

F (t)dt

)
= 0.

¤
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