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PERMUTATION FUNCTIONS ARISING
FROM INTERPOLATIONS

Sangtae Jeong and Hyeonok Lee

Abstract. In this paper, we give three criteria for non-polynomial func-
tions interpolated from the set of univariate polynomials of degree less
than m over a finite field to be a permutation on the same set.

1. Introduction

Permutation polynomials over finite fields have been the subject matter of
study since C. Hermite [4] gave a criterion for permutation polynomials over
finite prime fields. These polynomials have applications to various areas such
as coding theory, cryptography and combinatorial designs. At present, several
criteria for permutation polynomials in one variable over finite fields are well
known [7]. Along these works, some investigations of permutation polynomials
over other systems have been made. For example, permutation polynomials
of residue class rings modulo m were considered by Nöbauer, Cavior and oth-
ers. Rational functions that yield a permutation of the enlarged system, i.e.,
Fq ∪ {∞} were considered by Rédei and later by Carlitz. We refer to [7] and
the references therein for more details on permutation polynomials over other
systems. Besides, the first author [5] presented criteria for Am-permutation
polynomials over rational function fields with coefficients in a finite field, which
extend some criteria over finite fields such as Hermite-Dickson criterion [7].

Let Fq be the finite field of q elements where q is a power of a prime p, and
A = Fq[T ] be a polynomial ring in one variable T over Fq. Once and for all,
throughout, we fix an integer m ≥ 1. We denote by Am the set of polynomials
in A of degree < m and by Γ the set of all finite A-linear combinations of digit
derivatives {Dj}j≥0 given by the definitions in Section 2.

For an arbitrary map f : Am → Am, there is a unique non-polynomial
function f ∈ Γ of order < qm that represents f in the sense that f(a) = f(a)
for all a ∈ Am. Indeed, such a function is given by the following concise formula
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involving digit derivatives

f(x) = (−1)m
∑

a∈Am

f(a)D∗qm−1(x− a).

For a reference to the notations and terminologies see the definitions in
Section 2. We say that f(x) ∈ Γ is Am-invariant if f(Am) ⊂ Am, that is
f(a) ∈ Am for all a ∈ Am, and f is called an Am-permutation function if
f(Am) = Am. In this paper, we give three criteria for non-polynomial functions
interpolated from the set Am to be a permutation on the same set. To this
end, in Section 2 we deal with preliminaries on Carlitz polynomials and digit
derivatives associated with Am-invariant polynomials or functions and then
establish the extended Hermite-Dickson criterion for Am-permutation functions
in Section 3.

2. Preliminaries

We now recall that Fq is the finite field of q elements where q is a power of
a prime p and that A = Fq[T ] is a polynomial ring in one variable T over Fq.
For any integer n ≥ 0 we denote by An the set of polynomials in A of degree
less than n. To form Am-permutation functions or polynomials we introduce
two well known objects in the arithmetic of functions fields. Those objects are
Carlitz polynomials Gt(x) and digit derivatives Dt(x). We see from definitions
below that constructions of these two objects involve extensions from linear
objects using digit expansions.

Definition. (1) Set e0(x) = x and en(x) =
∏

a∈An
(x − a), (n ≥ 1). Let F0 =

L0 = 1 and for n ≥ 1 let [n] = T qn − T,

Fn = [n][n− 1]q · · · [1]q
n−1

, Ln = [n][n− 1] · · · [1].

Put E0(x) = x and En(x) = en(x)/Fn for any integer n > 0.
(2) For the q-adic expansion of t ≥ 0, which is given by

t = α0 + α1q + · · ·+ αsq
s

with 0 ≤ αi < q, put

Gt(x) :=
s∏

n=0

Eαn
n (x), t ≥ 1; G0(x) = 1,

and

G∗t (x) :=
s∏

n=0

G∗αnqn(x),

where

G∗αqn(x) =
{

Eα
n (x) if 0 ≤ α < q − 1;

Eα
n (x)− 1 if α = q − 1.
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Definition. (1) For each n ≥ 0 the nth hyper-differential operator Dn is
defined by Dn(T j) =

(
j
n

)
T j−n for j ≥ 0 and is extended to A by Fq-linearity.

(2) For the q-adic expansion of t ≥ 0, which is given by

t = α0 + α1q + · · ·+ αsq
s

with 0 ≤ αi < q, put

Dt(x) :=
s∏

n=0

Dαn
n (x), t ≥ 1; D0(x) = 1,

and

D∗t (x) :=
s∏

n=0

D∗αnqn(x),

where

D∗αqn(x) =
{ Dα

n(x) if 0 ≤ α < q − 1
Dα

n(x)− 1 if α = q − 1.

We remark that the Carlitz polynomials Gt(x) of degree t and the digit
derivatives Dt(x) of order t are respectively q-adic extensions of the Carlitz
linear polynomials En(x) and the hyper-differential operators Dn(x). It was
shown in [1, 3] that En(x) has an explicit expansion as an Fq-linear polynomial
of degree qn with coefficients in the quotient field of A. Also it is well known
that as an Fq-linear operator on A, Dn(x) satisfies the product rule, quotient
rule and chain rule. We refer to [2, 5] for details on Dn(x).

Let F∗t = G∗t or D∗t (t ≥ 0). By the definitions we see that F∗qn−1(x) kills all
elements a ∈ An excluding 0 for which case F∗qn−1(0) = (−1)n.

For later use we here state the binomial formula for Carlitz polynomials and
digit derivatives.

Lemma 2.1. Let (Ft,F∗t ) = (Gt, G
∗
t ) or (Dt,D

∗
t ). Then we have:

(1) Ft(x + u) =
∑

i+j=t

(
t
i

)Fi(x)Fj(u).
(2) Ft(x− u) =

∑
i+j=t(−1)j

(
t
i

)Fi(x)Fj(u).
(3) F∗t (x + u) =

∑
i+j=t

(
t
i

)Fi(x)F∗j (u).
(4) F∗t (x− u) =

∑
i+j=t(−1)j

(
t
i

)Fi(x)F∗j (u).

Proof. See [1] and [6]. ¤

We denote by Γ the set of finite A-linear combinations of digit derivatives
Dt, that is, Γ = SpanA{Dt : t ≥ 0}. We say that f ∈ Γ is of order d if d
is the maximum of those j with Bj 6= 0 in the expansion of f of the form
f(x) =

∑k
j=0 BjDj(x).

For any function f ∈ Γ and an integer t > 0, we define the reduction of t-th
power of f modulo Dqm , denoted f t(x), given by

(1) f t(x) = (−1)m
∑

a∈Am

f t(a)D∗qm−1(x− a).
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Then it is easily seen that f t(a) = f t(a) for a ∈ Am. By the binomial formula
in Lemma 2.1

(2) f t(x) =
qm−1∑

j=0

(
(−1)m

∑

a∈Am

D∗qm−1−j(a)f t(a)

)
Dj(x),

so f t(x) is of order < qm. The notation f depends on a fixed chosen integer
m > 0 but we do not add m to this notation in what follows.

Lemma 2.2. Let f(x) be a function in Γ of order ≤ k < qm for some integer
m ≥ 0. If f(a) = 0 for all a ∈ Am, then f is identically zero on A.

Proof. See Lemma 1 in [6]. ¤

Lemma 2.2 gives the following result which is similar to the reduction of
polynomials over any field.

Lemma 2.3. Let f, g be functions in Γ. Then we have f(a) = g(a) for all
a ∈ Am if and only if f = g on A.

Proof. For f, g ∈ Γ the function h := f − g is of order < qm. Then we see that
f(a) − g(a) = 0 for all a ∈ Am if and only if h(a) = 0 for all a ∈ Am. Then,
the latter is equivalent to h = 0 by Lemma 2.2. ¤

3. Main results

In this section, we establish the extended Hermite-Dickson criterion for Am-
permutation functions. To this end we recall the following lemma from [6].
This lemma is useful to distinguish among elements of Am.

Lemma 3.1. Let a0, a1, . . . , aqm−1 be elements of Am. Then the following are
equivalent:

(1) a0, a1, . . . , aqm−1 are distinct.

(2)
qm−1∑

i=0

G∗t (ai) =
{

0 0 ≤ t < qm − 1;
(−1)m t = qm − 1.

(3)
qm−1∑

i=0

Gt(ai) =
{

0 0 ≤ t < qm − 1;
(−1)m t = qm − 1.

(4)
qm−1∑

i=0

at
i =

{
0 0 ≤ t < qm − 1;
(−1)mFm/Lm t = qm − 1.

Proof. See Lemma 3.2. in [6]. ¤

The following lemma is parallel to Lemma 3.1.

Lemma 3.2. Let a0, a1, . . . , aqm−1 be elements of Am. Then the following are
equivalent:

(1) a0, a1, . . . , aqm−1 are distinct.
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(2)
qm−1∑

i=0

D∗t (ai) =
{

0 0 ≤ t < qm − 1;
(−1)m t = qm − 1.

(3)
qm−1∑

i=0

Dt(ai) =
{

0 0 ≤ t < qm − 1;
(−1)m t = qm − 1.

(4)
qm−1∑

i=0

at
i =

{
0 0 ≤ t < qm − 1;
(−1)mFm/Lm t = qm − 1.

Proof. The equivalence of (1) and (2) follows by applying Lemma 2.3 to the
sum of the characteristic functions. For a fixed i with 0 ≤ i ≤ qm− 1, consider
the function

φi(x) := (−1)mD∗qm−1(x− ai).

Then it is easy to see that φi is the characteristic function at ai ∈ Am, that
is φi(ai) = 1 and φi(b) = 0 for any b ∈ Am with b 6= ai. We, then, form the
function

φ(x) =
qm−1∑

i=0

φi(x) = (−1)m

qm−1∑

i=0

D∗qm−1(x− ai).

By the binomial formula (4) in Lemma 2.1 we rewrite it:

φ(x) = (−1)m

qm−1∑

i=0

qm−1∑

j=0

D∗qm−1−j(ai)Dj(x)

=
qm−1∑

j=0

(
(−1)m

qm−1∑

i=0

D∗qm−1−j(ai)

)
Dj(x).

We see that φ maps each element of Am into 1 if and only if {a0, . . . , aqm−1} =
Am. Since ordφ(x) < qm, Lemma 2.3 shows that φ(x) maps each element of
Am into 1 if and only if φ(x) = 1. This is equivalent to saying

(−1)m

qm−1∑

i=0

D∗qm−1−j(ai) = 0

unless j = 0 for which case we get
∑qm−1

i=0 D∗qm−1(ai) = (−1)m.
(2)⇔ (3): For t written in q-adic form as usual, we write

D∗t (x) = (Dα0
0 (x)− δα0(q−1)) · · · (Dαs

s (x)− δαs(q−1)),

where δij is the Kronecker delta. Expanding out the right hand side of the
previous equation, we get

D∗t (x) = Dt(x) +
t−1∑

i=0

C
(t)
i Di(x),
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where C
(t)
i ∈ {−1, 0, 1}. Thus the transition matrix of {D∗i (x) : 0 ≤ i ≤ t} to

{Di(x) : 0 ≤ i ≤ t} is a lower triangular matrix with diagonal entries all 1, so
the above equivalence follows from the invertibility of the transition matrix.

Finally, the equivalence of (1) and (4) follows immediately from Lemma 3.1.
¤

The following corollary is immediate from Lemma 3.2. In fact, it is a special
case of the orthogonality formula for digit derivatives(see [5]). We here give a
direct proof using the fact:

δj :=
∑

a∈Fq

aj =
{ −1 (q − 1)|j, j > 0;

0 otherwise.

Corollary 3.3.
∑

a∈Am

Dt(a) =
{

0 0 ≤ t < qm − 1;
(−1)m t = qm − 1.

Proof. Write t in base q as t = α0 + α1q + · · · + αm−1q
m−1 with 0 ≤ αi < q

and put a = a0 + a1T + · · ·+ am−1T
m−1. For 0 ≤ n ≤ m− 1, we use Dn(a) =

an +
(
n+1

n

)
an+1T + · · ·+ (

m−1
n

)
am−1T

m−1−n to compute the sum in question
as follows.∑

a∈Am

Dt(a) =
∑

a0,...,am−1∈Fq

Dα0
0 (a)Dα1

1 (a) · · · Dαm−1
m−1 (a)

=
∑

a1,...,am−1∈Fq




α0∑

j=0

(
α0

j

)
aj
0b

α0−j


 · Dα1

1 (a) · · · Dαm−1
m−1 (a),

where b = D0(a)− a0

=
α0∑

j=0

(
α0

j

) ∑

a1,...,am−1∈Fq


 ∑

a0∈Fq

aj
0


 bα0−j · Dα1

1 (a) · · · Dαm−1
m−1 (a)

= δα0

∑

a1,...,am−1∈Fq

Dα1
1 (a) · · · Dαm−1

m−1 (a)

= δα0

∑

a2,...,am−1∈Fq




α1∑

j=0

(
α1

j

)
aj
1b

α1−j


 · Dα2

2 (a) · · · Dαm−1
m−1 (a),

where b = D1(a)− a1

= δα0δα1

∑

a2,...,am−1∈Fq

Dα2
2 (a) · · · Dαm−1

m−1 (a).

Summing up over ai in this fashion, we see that the sum is equal to δα0 · · ·
δαm−1 . Hence, we obtain the desired result. ¤

We now state the extended Hermite-Dickson criterion for Am-permutation
functions, which is parallel to Theorem 1.2. in [6] for Am-permutation polyno-
mials.
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Theorem 3.4. Let Fq be of characteristic p and let f(x) ∈ Γ be an Am-
invariant function. Then f is an Am-permutation function if and only if

(1) f has exactly one root in Am;
(2) for each integer t with 1 ≤ t ≤ qm − 2 such that t 6≡ 0 (mod p), the

reduction of f(x)t (mod Dm(x)) has order ≤ qm − 2.

Proof. Suppose that an Am-invariant f ∈ Γ is an Am-permutation function.
Then we only prove part (2) since part (1) is trivially true. Write f t =∑qm−1

i=0 B
(t)
i Di. Then we see by Lemma 3.2 that

∑

a∈Am

f t(a) =
∑

a∈Am

f t(a) =
qm−1∑

i=0

B
(t)
i

∑

a∈Am

Di(a) = (−1)mB
(t)
qm−1.

Since f is an Am-permutation function, Lemma 3.1 gives B
(t)
qm−1 = 0 for 1 ≤

t ≤ qm − 2. Hence part (2) follows.
Conversely, suppose (1) and (2) hold. It is then easy to see from (1) that

∑

a∈Am

G∗qm−1(f(a)) = (−1)m.

We also see from part(2) and Lemma 3.2 that for 1 ≤ t ≤ qm − 2 such that
t 6≡ 0 (mod p), ∑

a∈Am

f(a)t = 0.

Using

∑

a∈Am

f(a)tpi

=

( ∑

a∈Am

f(a)t

)pi

,

we get
∑

a∈Am
(f(a))t = 0 for 0 ≤ t ≤ qm − 2. Hence

∑
a∈Am

G∗t (f(a)) = 0 for
0 ≤ t ≤ qm − 2. Now the result follows from Lemma 3.1. ¤

As a corollary, we have the following result.

Corollary 3.5. Let d > 1 be a divisor of qm − 1 and let f ∈ Γ be an
Am-invariant function with

∑
a∈Am

f (qm−1)/d(a) 6= 0. Then f is not an Am-
permutation function of Am of order d.

Proof. Suppose we have an Am-permutation function f of order d > 1 dividing
qm− 1. Then we see from Equation(2) that the reduction of f (qm−1)/d modulo
Dm is of order qm − 1. Hence it contradicts part (2) of Theorem 3.4. ¤

When we take m = 1 and t = 1 in Equation(1) the function f reduces to a
polynomial over a finite field Fq

f(x) = −
∑

α∈Fq

f(α)((x− α)q−1 − 1),
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which is given by the Lagrange interpolation formula in finite fields. We see
that for any polynomial f over Fq the reduction of f(x) (mod (xq − x)) is
nothing but f(x). Hence Theorem 3.4 reduces to the Hermite-Dickson criterion
in finite fields(see Theorem 7.4 in [7]).

Corollary 3.6. Let Fq be of characteristic p. Then f(x) ∈ Fq[x] is a permu-
tation polynomial if and only if

(1) f has exactly one root in Fq;
(2) for each integer t with 1 ≤ t ≤ q − 2 such that t 6≡ 0 (mod p), the

reduction of f(x)t (mod (xq − x)) has degree ≤ q − 2.

We shall see that part (1) in Theorem 3.4 is equivalent to the order condition
in terms of reduction.

Theorem 3.7. Let Fq be of characteristic p and let f(x) ∈ Γ be an Am-
invariant function. Then f is an Am-permutation function if and only if

(1) the reduction of f(x)qm−1 (mod (Dm(x))) has order qm − 1;
(2) for each integer t with 1 ≤ t ≤ qm − 2 such that t 6≡ 0 (mod p), the

reduction of f(x)t (mod Dm(x)) has order ≤ qm − 2.

Proof. Suppose that an Am-invariant f(x) ∈ Γ is an Am-permutation function.
It suffices then to show part (1) since part (2) follows from Theorem 3.4. Using
the same notation as Theorem 3.4, we get

B
(qm−1)
qm−1 = (−1)m

∑

a∈Am

f(a)qm−1,

which equals Fm/Lm, by Lemma 3.2 and so we are done.
Conversely, suppose (1) and (2) hold. Then as in the proof of Theorem 3.4

we see that (2) implies that
∑

a∈Am
f(a)t = 0 for 0 ≤ t ≤ qm − 2. Hence∑

a∈Am
G∗t (f(a)) = 0 for 0 ≤ t ≤ qm − 2. On the other hand, it is easy to see

that (1) implies
∑

a∈Am
f(a)qm−1 6= 0. Hence

∑
a∈Am

G∗qm−1(f(a)) 6= 0. Now
consider the function

χ(x) = (−1)m
∑

a∈Am

G∗qm−1(x− f(a)).

We then know that χ is a non-zero constant polynomial. Suppose that f is not
an Am-permutation function. Then there is an element α ∈ Am which does not
belong to the range of f. Hence χ(α) = 0, which leads to a contradiction. ¤

The theory of additive characters of Am applies also to Am-permutation
functions so we have the following result which is analogous to Theorem 1.4.
in [6] for Am-permutation polynomials.

Theorem 3.8. Let f(x) ∈ Γ be an Am-invariant function. Then f is an
Am-permutation function if and only if∑

a∈Am

χ(f(a)) = 0
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for all nontrivial additive character χ of Am.

Proof. The proof of Theorem 1.4 in [6] is carried over with the Am-invariant
polynomials replaced by the Am-invariant functions. ¤

4. Examples

In this section we give two examples of Am-permutation functions.

Example 1. Take A = F2[T ] and m = 3. Then

A3 = {0, 1, T, T + 1, T 2, T 2 + 1, T 2 + T, T 2 + T + 1}.
Consider the function f(x) ∈ Γ of order 6 given by

f(x) = T 4D6(x) + T 3D4(x) + T 2D3(x) + T 3D2(x) + (T + 1)D1(x) + T.

We can use definitions in Section 2 and Theorem 3.7 to check that f induces
a permutation on A3 corresponding to (0 T T 2 T 2 + T ). Since elements in
Am can be viewed as an m-tuple of elements in Fq, Am-permutation functions
induce not only permutations from Am into itself but also permutations from
Fq

m into itself. So f induces a permutation on F3
2 given by

(000) 7→ (010) 7→ (001) 7→ (011) 7→ (000)

with the remaining vectors fixed.

Consider the function f(x) given by

f(x) = T 4D6(x) + T 3D4(x) + T 2D3(x) + (T 3 + T 2)D2(x) + (T + 1)D1(x) + 1.

We see that f induces a permutation on A3 corresponding to

(0 1 T T + 1 T 2 T 2 + 1 T 2 + T T 2 + T + 1).

It also induces a permutation on F3
2 given by

(000) 7→ (100) 7→ (010) 7→ (110) 7→ (001) 7→ (101) 7→ (011) 7→ (111) 7→ (000).

Example 2. Take A = F3[T ] and m = 2. Then

A2 = {0, 1, 2, T, T + 1, T + 2, 2T, 2T + 1, 2T + 2}.
Consider the function f(x) ∈ Γ given by

f(x) = (2T 3 +1)D6(x)+(2T 2 +2T +2)D4(x)+(2T +1)D2(x)+D1(x)+(T +2).

We see that f induces a permutation on A2 corresponding to

(0 T + 2 2T + 1)

and that the polynomial induces a permutation on F2
3 given by (00) 7→ (21) 7→

(12) 7→ (00) with the remaining vectors fixed.

Consider the function f(x) given by

f(x) = (2T 2 + 2T + 2)D7(x) + (T 2 + T )D6(x) + (2T + 1)D5(x)
+ 2D4(x) + (2T 3 + 2T 2 + 2T )D3(x) + 2D2(x) + TD1(x) + T.
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Then f induces a permutation on A2 corresponding to (0 T 2T )(1 2T+2). It also
induces a permutation on F2

3 given by (00) 7→ (01) 7→ (02) 7→ (00), (10) ↔ (22)
with the remaining vectors fixed.
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