DOI QR코드

DOI QR Code

일반적인 날개 형상에서의 앞전 판에 의한 말굽와류 제어

Controlling the Horseshoe Vortex by the Leading-Edge Fence at a Generic Wing-Body Junction

  • 조종재 (부산대학교 항공우주공학과 대학원) ;
  • 김귀순 (부산대학교 항공우주공학과)
  • 발행 : 2009.04.01

초록

터빈 익렬 내의 2차유동손실은 터빈 익렬에서 발생하는 전체 공기역학적 손실의 30~50% 차지한다. 따라서 터빈 효율 향상에 있어 개선해야 될 중요한 부분으로 인식되고 있다. 또한, 과거부터 2차유동에 의한 손실을 줄이기 위한 많은 연구들이 수행되어졌다. 본 논문에서는 2차유동손실을 일으키는 요인 중의 하나인 말굽와류의 강도를 감쇄시키기 위해 일반적인 날개 앞전에 판을 설치하였으며, 판의 설치 높이 및 길이 등의 형상변수에 따라 발생된 말굽와류의 특성에 대해 연구하였다. 연구를 위해 $FLUENT^{TM}$를 이용하였다. 그리고 기준 모델의 경우보다 전압력 손실 계수가 약 4.0% 향상되었다.

Secondary flow losses can be as high as 30~50% of the total aerodynamic losses generated in the cascade of a turbine. Therefore, these are important part for improving a turbine efficiency. As well, many studies have been performed to decrease the secondary flow losses. The present study deals with the leading edge fences on a wing-body to decrease a horseshoe vortex, one of the factors to generate the secondary flow losses, and investigates the characteristics of the generated horseshoe vortex as the shape factors, such as the installed height, and length of the fence. The study was investigated using $FLUENT^{TM}$. Total pressure loss coefficient was improved about 4.0 % at the best case than the baseline.

키워드

참고문헌

  1. O. P. Sharma, T. L. Butler, Predictions of Endwall Losses and Secondary flows in Axial Flow Turbine Cascades, Journal of Turbomachinery. Vol. 109, 1987, pp. 229-236. https://doi.org/10.1115/1.3262089
  2. L. S. Langston, Secondary Flows in Axial Turbines-A Review, International Symposium Heat Transfer in Gas Turbine Systems, 2000. https://doi.org/10.1111/j.1749-6632.2001.tb05839.x
  3. L. R. Kubendran, W. D. Harvey, Juncture Flow Control Using Leading-Edge Fillets, AIAA-85-4097, 1985.
  4. C. Sung, C. Lin, Numerical investigation on the Effect of Fairing on the Vortex Flows Around Airfoil/Flat-Plate Junctures, AIAA-88-0615, 1988.
  5. W. J. Devenport, R. L. Simpson, M. B. Dewitz and N. K. Agarwal, Effects of a Strake on the Flow Past a Wing-Body Junction, AIAA-91-0252, 1991.
  6. T. I. Shih, Y. L. Lin, Controlling Secondary Flow Structure by Leading-Edge Airfoil Fillet and Inlet Swirl to Reduce Aerodynamic Loss and Surface Heat Transfer, Journal of Turbomachinery, Vol. 125, Issue 1, 2003, pp. 48-56. https://doi.org/10.1115/1.1518503
  7. H. Sauer, R. Mueller, K. Vogeler, Reduction of Secondary Flow Losses in Turbine Cascades by Leading Edge Modifications at the Endwall, 2000-GT-0473, 2000.
  8. G. A. Zess, K. A. Thole, Computational Design and Experimental Evaluation of Using a Leading Edge Fillet on a Gas Turbine Vane, Journal of Turbomachinery, Vol. 124, 2002, pp. 167-175. https://doi.org/10.1115/1.1460914
  9. S. Olcmen, R. Simpson, An experimental study of a three-dimensional pressure-driven turbulent boundary layer, Journal of Fluid Mechanics, Vol. 290, 1995, pp. 225-262. https://doi.org/10.1017/S0022112095002497
  10. S. Olcmen, R. Simpson, Some features of a turbulent wing-body junction vortical flow, 35th Aerospace Sciences Meeting and Exhibit, AIAA-97-0651, 1977.
  11. V. Yakhot, S. A. Orszag, Renormalization Group Analysis of Turbulence. 1. Basic Theory, Journal of Science Computation, Vol. 1, 1986, pp. 3-51. https://doi.org/10.1007/BF01061452
  12. L. R. Kubendran, A. Bar-Sever and W. D. Harvey, Flow Control in a Wing/Fuselage Type Juncture, AIAA-88-0614, 1988.
  13. W. A. Eckerle, L. S. Langston, Horseshoe Vortex Formation Around a Cylinder, Journal of Turbomachinery, Vol. 109, 1987, pp. 278-285. https://doi.org/10.1115/1.3262098
  14. F. J. Pierce, J. Shin, The Development of a Turbulent Junction Vortex System, Journal of Fluids Engineering, Vol. 114, 1992, pp. 559-565. https://doi.org/10.1115/1.2910068
  15. D. G. Gregory-Smith, J. A. Walsh, C. P. Graves, K. P. Fulton, Turbulence Measurement and Secondary Flows in a Turbine Rotor Cascade, Journal of Turbo machinery, Vol. 110, 1988, pp. 479-485. https://doi.org/10.1115/1.3262221
  16. R. Radomsky, K. A. Thole, High Freestream Turbulence Effects in the Endwall Leading Edge Region, Journal of Turbomachinery, Vol. 124, 2002, pp. 107-118. https://doi.org/10.1115/1.1424891