DOI QR코드

DOI QR Code

거대 구조물의 유체-구조 연계 해석을 위한 효과적인 보간기법에 대한 연구

A Study on the Effective Interpolation Methods to the Fluid-Structure Interaction Analysis for Large-Scale Structure

  • 발행 : 2009.05.01

초록

대부분의 자연현상은 다학제 특성을 갖고 표현된다. 유체-구조 연계(FSI) 문제의 경우 기존에 검증된 전산유체 해석 프로그램 및 구조해석 프로그램을 그대로 사용할 수 있다는 장점 때문에 약결합 방식이 일반적으로 이용된다. 그러나 약결합을 이용하여 해석을 수행하기 위해서는 서로 다른 특성을 갖는 격자시스템으로 발생되는 자료의 교환을 위해서 보간 및 사상이 필수적이다. 본 연구에서는 전역지지 및 국부지지 방사기저함수(RBF)를 이용한 보간 및 가상일의 원리를 적용한 사상의 성능을 단순 3차원 형상에 적용하여 검토하였다. 국부지지 RBF에 공간분할 트리의 일종으로 빠른 공간 탐색을 가능하게 해주는 kd-tree를 사용하는 경우 효과적으로 거대 구조물의 FSI에도 보간 및 사상이 적용 가능함을 여객기 형상의 항공기 모형을 이용하여 제시하였다.

Generally, the events in nature have multi-disciplinary characteristics. To solve this problems, these days loosely coupled methods are widely applied because of advantage of solvers which are already developed and well proved. Those solvers use different mesh system, so transformation and mapping of data are vital in the field of fluid-structure interaction(FSI). In this paper, the interpolation of deformation which is used globally and compactly supported radial basis functions(RBF), and mapping of force which use principle of virtual work are examined for computing time and accuracy to compare ability with simple 3-D problem. As the results, interpolation scheme of compactly supported radial basis functions are useful to interpolation and mapping for large-scale airplane in FSI with a k-dimensional tree(kd-tree) which is a space-partitioning data structure for organizing points in a k-dimensional space.

키워드

참고문헌

  1. K. Namkoong, H. G. Choi, and J. Y. Yoo, “Computation of Dynamic Fluid-Structure Interaction in Two-dimensional Laminar Flows using Combined Formulation”, J. of Fluids and structures, vol 20, pp. 51-69, 2005. https://doi.org/10.1016/j.jfluidstructs.2004.06.008
  2. S. K. Jung, H. A. Duong, Y. M. Lee, J. H. Lee, R. S. M. and T. H. Cho, "A Static Fluid-Structure Interaction Analysis System Based on the Navier-Stokes Equations for the Prediction of Aerodynamic Characteristics of Aircraft", KSAS International Journal, Vol.36, No. 6, pp. 532-540, 2008.
  3. G. P. Guruswamy, "A Review of Numerical Fluid-Structures Interface Method for Computations Using High-Fidelity Equations", Comput Struct., Vol. 80, 2002,pp. 31-41 https://doi.org/10.1016/S0045-7949(01)00164-X
  4. M. J. Smith and D. H. Hodges, "Evaluation of Computational Algorithms Suitable for Fluid-Structure Interactions", Journal of Aircraft, Vol. 37, No. 2, pp.282-294, 2000. https://doi.org/10.2514/2.2592
  5. M. H. L. Hounjet and J. J. Meijer, "Evaluation of Elastomechnical and Aerodynamic Data Transfer Methods for non-planar Configurations in Computational Aeroelastic Analysis", National Aerospace Laboratory, NLR-TP-95690, 1995.
  6. J. H. Lee and J. H. Kwon, "A Study on the Interpolation Methods for the Fluid-Structure Interaction Analysis", Computational Fluid Dynamics Journal, Vol. 13, No. 1, pp. 41-48, 2008.
  7. ZAERO(Engineers' Toolkit for Aeroelastic Solutions) Ver. 7.3, Theoretical Manual, ZONA Technology Inc., Section 6.0.
  8. R. Ahrem, A. Becker, and H. Wendland, "A New Multivarite Interpolation Method for Large-Scale Spatial Coupling Problems in Aeroelasticity", International Forum on Aeroelasticity and Structural Dynamics (IFASD) Germany, Vol. 4, ISBN 393218243X, 2005.
  9. C. B. Allenand and T. C. S. Rendall, "Unified Approach to CFD-CSD Interpolationand Mesh Motion using Radial Basis Functions", AIAA 2007-3804, 25th AIAA Applied Aerodynamics Conference, 2007.
  10. R. Melville, "Nonlinear Simulation of F-16 Aeroelastic Instability", AIAA Paper 2001-0570, Jan. 2001.
  11. D. H. Kim, H. J. Kwon, and I. Lee, "Virtual Flutter Test of a Full Configuration Aircraft with Pylon/External Stores", KSAS International Journal, Vol. 4, No. 1, pp. 34-44, May 2003.
  12. D. H. Kim, Y. M. Park, I. Lee and O. J. Kwon, "Nonlinear Aeroelastic Computation of a Wing/Pylon/Finned-Store Using Parallel Computing", AIAA Journal, Vol. 43, No. 1, pp. 53-62, Jan. 2005. https://doi.org/10.2514/1.11011
  13. R. Ahrem, A. Beckert and H. Wendland. "A New Multivariate Interpolation Method for Large-scale Spatial Coupling Problems in Aeroelasticity", Technical Report, Institut fur Numerische und Angewandte Mathematik, Universitat Gottingen, Lotzestr. 16-18, 37083 Gottingen, Germany, 2001.
  14. A. Beckert and H. Wendland. "Multivariate Interpolation for Fluid-Structure Interaction Problems using Radial Basis Functions", Aerospace Science Technologies. Elsevier Scientific and Medical Editions. S1270-9638 (00) 01087-7/FLA, 2001. https://doi.org/10.1016/S1270-9638(00)01087-7
  15. G. Donato and S. Belongie, "Appoximation Methods Thin Plate Spline Mappings and Principal Warps", ECCV, LNCS 2352, pp. 21–31, 2002.
  16. A. de Boer, A. H. van Zuijlen and H. Bijl, "Comparision of the Conservative and a Consistent Approach for the Coupling of Non-matching Meshes", European Conference on Computational Fluid Dynamics, pp. 1-19 , 2006.
  17. H. Wendland, "Piecewise Polynomial, Positive Definite and Compactly Supported Radial Basis Functions of Minimal Degree", Adv. Comput. Math., Vol. 4, 389-396, 1995. https://doi.org/10.1007/BF02123482
  18. J. L. Bentley, "Multidimensional Binary Search Trees Used for Associative Searching", Communications of the ACM, pp. 509-517, 1975. https://doi.org/10.1145/361002.361007
  19. Matlab Central File Exchange, http://www.mathworks.com/matlabcentral/fileexchange/4586

피인용 문헌

  1. The Prediction of Aeroelasticity of F-5 Aircraft's Horizontal Tail with Various Shape of External Stores vol.39, pp.9, 2011, https://doi.org/10.5139/JKSAS.2011.39.9.823
  2. Fluid-Structure Interaction Analysis of High Aspect Ratio Wing for the Prediction of Aero-elasticity vol.38, pp.6, 2010, https://doi.org/10.5139/JKSAS.2010.38.6.547