DOI QR코드

DOI QR Code

평판에서 압전 세라믹 액추에이터에 의한 유동제어

Flow Control by Piezoceramic Actuator in a flat plate

  • 김동하 (한국항공대학교 항공우주 및 기계공학과 대학원) ;
  • 한종섭 (한국항공대학교 항공운항관리학과 대학원) ;
  • 장조원 (한국항공대학교 항공운항학과) ;
  • 김학봉 (한국항공대학교 항공우주 및 기계공학과)
  • 발행 : 2009.11.01

초록

평판 유동에서 유동을 제어하기 위하여 압전 세라믹을 이용한 액추에이터가 설계되었다. 액추에이터가 15Hz의 낮은 가진 주파수로 구동할 때, 설계된 액추에이터에 의해 발생된 유동 교란을 알아보기 위해 경계층 측정이 수행되었다. 경계층에서의 평균 유동속도와 섭동량이 액추에이터 끝단에서 $x/{\delta}^*=31.9$ 떨어진 하류위치에서 1축 열선프로브(55P14)로 측정되었다. 측정 결과, 속도가 느린 영역과 빠른 영역이 각각 액추에이터의 중심부근 및 바깥부분에서 관찰되었으며, 이것으로 서로 마주보며 회전하는 한 쌍의 유동방향 와류의 발생이 예측되었다. 섭동량은 액추에이터의 바깥부분에서 크게 나타났으며, 벽면근처에서 유동방향 속도의 스팬방향 변화에서 변곡점이 관찰되었다. 액추에이터가 낮은 주파수에서 구동하는 경우에는 경계층 불안정성이 액추에이터의 가진 주파수와 T-S 파동에 해당하는 주파수에서 함께 증폭된다.

An actuator using piezoceramic material was designed in order to perform a flow control for flat plate flow. Boundary layer measurements were carried out to explore the flow disturbances by the designed actuator that was activated at low excitation frequency(15Hz). The mean velocity and fluctuation in the boundary layers were measured at $x/{\delta}^*=31.9$ downstream from the actuator tip by a one-dimensional hot-wire probe(55P14). Results reveal that low- and high-velocity regions were observed in the vicinity of the actuator center and in the outer area of the actuator respectively, and the formation of counter-rotating streamwise vortices was predicted. The fluctuations were persistently found in the outer part of the actuator and an inflection point in the spanwise gradient of the streamwise velocity was observed. Boundary layer instability was amplified at both the actuator excitation frequency and the T-S wave frequency when the actuator was excited at low frequency.

키워드

참고문헌

  1. Gad-el-Hak, M., "Modern developments in flow control", Appl. Mech. Rev. Vol. 49, 1996, pp. 365-379. https://doi.org/10.1115/1.3101931
  2. Seifert, A., Bachar, T., Koss, D., Shepshelovich, M., and Wygnanski, I., "Oscillatory Blowing: A Tool to Delay Boundary-Layer Separation", AIAA Journal, Vol. 31, 1993, pp. 2052-2060. https://doi.org/10.2514/3.49121
  3. Seifert, A., Darabi, A., and Wygnanski, I., "Delay of Airfoil Stall by Periodic Excitation", Journal of Aircraft, Vol. 33, 1996, pp. 691-698. https://doi.org/10.2514/3.47003
  4. Greenblatt, D. and Wygnanski, I. J., "The control of flow separation by periodic excitation", Progress in Aerospace Sciences, Vol. 36, 2000, pp. 487-545. https://doi.org/10.1016/S0376-0421(00)00008-7
  5. Wiltse, J. M. and Glezer, A., "Manipulation of free shear flows using piezoelectric actuators", Journal of Fluid Mechanics, Vol. 249, 1993, pp. 261-285. https://doi.org/10.1017/S002211209300117X
  6. Jacobson, S. A., and Reynolds, W. C., "Active control of streamwise vortices and streaks in boundary layers", Journal of Fluid Mechanics, Vol. 360, 1998, pp. 179-211. https://doi.org/10.1017/S0022112097008562
  7. Seifert, A., Eliahu, S., and Wygnanski, I., "Use of Piezoelectric Actuators for Airfoil Separation", AIAA Journal, Vol. 36, 1998, pp. 1535-1537. https://doi.org/10.2514/2.549
  8. Jeon, W. P., and Blackwelder, R. F., "Perturbations in the wall region using flush mounted piezoceramic actuators", Experiments in Fluids, Vol. 28, 2000. pp. 485-496. https://doi.org/10.1007/s003480050410
  9. Choi, J., Jeon, W. P., and Choi, H. C., "Control of Flow Around an Airfoil Using Piezoceramic Actuators", AIAA Journal, Vol. 40, 2002, pp. 1008-1010. https://doi.org/10.2514/2.1741
  10. Orlandi, P., and Jimenez, J., "On the generation of turbulent wall friction", Physics of Fluids, Vol. 6, 1994, pp. 634-641. https://doi.org/10.1063/1.868303
  11. Swearingen, J. D., and Blackwelder, R. F., "The growth and breakdown of stresmwise vortices in the presence of a wall", Journal of Fluid Mechanics, Vol. 182, 1987, pp. 255-290. https://doi.org/10.1017/S0022112087002337
  12. Blackwelder, R. F., "Analogies between transition and turbulent boundary layers", Physics of Fluids, Vol. 26, 1983, pp. 2807 -2815. https://doi.org/10.1063/1.864047
  13. Choi, H, Moin, P., and Kim. J., "Active flow control for drag reduction in wall-bounded flows", Journal of Fluid Mechanics, Vol. 262, 1994, pp. 75-110. https://doi.org/10.1017/S0022112094000431