DOI QR코드

DOI QR Code

Stability Analysis of Boundary Layers on Airfoils by using PSE

PSE를 이용한 익형 위 경계층 안정성 해석

  • 박동훈 (KAIST 항공우주공학과 대학원) ;
  • 박승오 (KAIST 항공우주공학과)
  • Published : 2009.11.01

Abstract

In this study, stability analysis of boundary layers on airfoils is performed by using parabolized stability equations(PSE). Boundary layer edge conditions are obtained by compressible inviscid flow calculations. Mean velocity and temperature profiles of the laminar boundary layer are obtained by solving compressible boundary layer equations in generalized curvilinear coordinates with fourth order accuracy in the wall normal direction. Laminar mean flow profiles are used as input data for PSE to investigate growth rates of disturbances and stability characteristics. For the cases of boundary layer on NACA0012 and HSNLF(1)-0213 airfoils at Mach number 0.5, growth rates with respect to disturbance frequencies and profiles of disturbance amplitude are investigated. The effect of angle of attack on stability characteristics are examined at both upper and lower surfaces. The neutral stability curves, effect of Mach number and effect of airfoil section shapes are also analyzed.

경계층 안정성 방정식인 PSE를 이용하여 익형 표면에 형성되는 경계층의 안정성 해석을 수행하였다. 압축성 비점성 유동 해석으로 경계층 가장자리 조건을 얻고, 일반좌표계에서의 압축성 경계층 방정식을 4차 정확도로 계산하여 층류 경계층 유동장을 얻었다. 층류 경계층 데이터를 PSE의 입력으로 하여 안정성 해석을 수행하고 교란의 증폭률을 얻어 안정성 특성을 고찰 하였다. 마하수 0.5의 NACA0012 및 HSNLF(1)-0213 익형에 대한 해석을 수행하여 교란 주파수에 따른 증폭률 및 위치에 따른 교란의 진폭 분포 특성을 파악하였다. 익형의 윗면과 아랫면에서 받음각에 따른 안정성 특성을 각각 증폭률의 크기와 주파수 범위에 대해 분석하였다. 또한 중립안정성 곡선, 마하수에 따른 안정성 특성을 살펴보았으며 익형의 종류에 따른 안정성 특성 차이를 분석하였다.

Keywords

References

  1. Argyris G. Panaras, "Boundary-Layer Equations in Generalized Curviliniear Coordinates", NASA Technical Memorandum 100003, 1987.
  2. Venkit Iyer, "Computation of Three-Dimensional Compressible Boundary Layers to Fourth-Order Accuracy on Wings and Fuselages", NASA Contractor Report 4269, 1990.
  3. Bertolotti, F.P., "Linear and Nonlinear Stability of Boundary Layers with Streamwise Varying Properties", Ph.D.Dissertation, The Ohio State University, 1990.
  4. C-L. Chang and M.R. Malik, "Compressible Stability of Growing Boundary Layers Using Parabolized Stability Equation", AIAA 91-1636, 1991.
  5. F.Li and M.R.Malik, "On the Nature of PSE Approximation", Theoret. Comput. Fluid Dynamics, Vol. 8, pp. 253-273, 1996. https://doi.org/10.1007/BF00639695
  6. C-L. Chang and M.R. Malik, "Oblique-mode breakdown and secondary instability in supersonic boundary layers", J. Fluid Mechanics, Vol.273, pp. 323-360, 1994 https://doi.org/10.1017/S0022112094001965
  7. M.R.Malik, "Numerical Methods for Hypersonic Boundary Layer Stability", Journal of Computational Physics, Vol.86, pp. 376-413, 1990. https://doi.org/10.1016/0021-9991(90)90106-B
  8. 박동훈, 박승오, "Parabolized Stability Equation을 이용한 압축성 경계층의 안정성 해석", 2008 한국항공우주공학회 추계학술대회, pp. 204-208, 2008.
  9. L.M.Mack, "Boundary-Layer Stability Theory", AGARD Report No.709, 1984.
  10. F.P.Bertolotti and Th. Herbert, "Analysis of the Linear Stability of Compressible Boundary Layers Using the PSE", Theoret. Comput. Fluid Dynamics, Vol. 3, pp. 117-124, 1991. https://doi.org/10.1007/BF00271620
  11. C.-L.Chang and M.R.Malik, "Non-Parallel Stability of Compressible Boundary Layers", AIAA 93-2912, 1993.
  12. Gao Bing, "A Relaxation Technique of PSE Integration and its Application on Stability Analysis of Boundary Layer over a Hump", Ph.D.Thesis, KAIST, 2008.
  13. Emma C. Nash, Martin V. Lowson and Alan McAlpine, "Bounary-layer instability noise on aerofoils", Jounral of Fluid Mechanics Vol. 382, pp. 27-61, 1999. https://doi.org/10.1017/S002211209800367X
  14. H.L.Reed and William S. Saric, "Linear Stability Theory Applied to Boundary Layers", Annu. Rev. Fluid Mech. Vol.28, pp. 389-428, 1996. https://doi.org/10.1146/annurev.fl.28.010196.002133
  15. J.K.Viken, S.A.Viken, W.Pfennninger, H.L.Morgan and R.L. Campbell, "Design of the Low-Speed NLF(1)-0414F and the High-Speed HSNLF(1)-0213 Airfoils with High-Lift Systems", NASA-CP-2487, pp. 637-672, 1987.