References
-
Adams EE, Caulfield JA, Herzog HJ and Auerbach DI. 1997. Impacts of reduced pH from ocean CO
$_2$ disposal: sensitivity of zooplankton mortality to model parameters. Waste Management 17, 375-380 https://doi.org/10.1016/S0956-053X(97)10038-1 -
Auerbach DI, Caulfield JA, Adams EE and Herzog HJ. 1997. Impacts of ocean CO
$_2$ disposal on marine life: A toxicological assessment intergrating constant-concentration laboratory assay data with variable-concentration field exposure. Environ Model Assess 2, 333-343 https://doi.org/10.1023/A:1019029931755 - Brouwer M, Larkin P, Brown-Peterson N, King C, Manning S and Denslow N. 2004. Effects of hypoxia on gene and protein expression in the blue crab, Callinectes sapidus. Mar Environ Res 58, 787-792 https://doi.org/10.1016/j.marenvres.2004.03.094
- Cole KH, Stegen GR and Spencer D. 1995. The capacity of the deep oceans to absorb carbon dioxide. In: Direct ocean disposal of carbon dioxide. Handa N and Ohsumi T, eds. Terra Sceintific Publishing Company Tokyo, Japan., 143-152
-
Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ and Millero FJ. 2004. Impact of anthro-pogenic CO
$_2$ on the CaCO$_3$ system in the oceans. Science 305, 362-366 https://doi.org/10.1126/science.1097329 - Fivelstad S, Olsen AB, Kluften H, Ski H and Stefansson S. 1999. Effects of carbon dioxide on Atlantic salmon (Salmo salar L.) smolts, at constant pH in bicarbonate rich freshwater. Aquaculture 178, 171-187 https://doi.org/10.1016/S0044-8486(99)00125-8
- Fivelstad S, Olsen AB, Asgard T, Baeverfjord G, Rasmussen T, Vindheim T and Stefansson S. 2003. Long-term sublethal effects of carbon dioxide on Atlantic salmon smolts (Salmo salar L.): ion regula-tion, haematology, element composition, nephrocal-cinosis and growth parameters. Aquaculture 215, 301-319 https://doi.org/10.1016/S0044-8486(02)00048-0
-
Fivelstad S, Waagb
$\o$ R, Stefansson S, Olsen AB. 2007. Impacts of elevated water carbon dioxide partial pre-ssure at two temperatures on Atlantic salmon (Salmo salar L.) parr growth and haematology. Aquaculture. 269. 241-249 https://doi.org/10.1016/j.aquaculture.2007.05.039 - Gazeau F, Quiblier C, Jansen JM, Gattuso JP, Middelburg JJ and Heip CHR. 2007. Impact of elevated CO2 on shellfish calcification. Geophys Res Lett 34, 5
- Grottum JA and Sigholt T. 1996. Acute toxicity of carbon dioxide on European seabass (Dicentrachus labrax): Mortality and effects on plasma ions. Comp Biochem Physiol 115, 323-327 https://doi.org/10.1016/S0300-9629(96)00100-4
- Hayashi M, Kita J and Ishimatsu A. 2004. Acid-base responses to lethal aquatic hypercapnia in three marine fish. Mar Biol 144, 153-160 https://doi.org/10.1007/s00227-003-1172-y
-
Iglesias-Rodriguez MD, Halloran PR, Rickaby REM, Hall IR, Colmenero-Hidalgo E, Gittins JR, Green DRH, Tyrrell T, Gibbs SJ, von Dassow P, Rehm E, Virginia Armbrust E and Boessenkooland KP. 2008. Phyto-plankton calcification in a high-COCO
$_2$ world. Science 320, 336-340 https://doi.org/10.1126/science.1154122 - IPCC. 2001. Climate change 2001: Synthesis Report. A Contribution of Working Groups I, II and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change. University Press, Cam-bridge
- Ingermann RL, Holcomb M, Robinson ML and Cloud JG. 2002. Carbon dioxide and pH affect sperm motility of white sturgeon (Acipenser transmontanus). J Exp Biol 205, 2885-2890
-
Ishimatsu A, Kikkawa T, Hayashi M, Lee KS and Kita J. 2004. Effects of CO
$_2$ on marine fish: Larvae and adults. J Oceanogr 60, 731-741 https://doi.org/10.1007/s10872-004-5765-y -
Ishimatsu A, Hayashi M and Kikkawa T. 2008. Fishes in high-CO
$_2$ , acidified oceans. Mar Ecol Prog Ser 373, 295-302 https://doi.org/10.3354/meps07823 -
Kikkawa T, Ishimatsu A and Kita J. 2003. Acute CO
$_2$ tolerance during the early developmental stages of four marine teleost. Environ Toxicol 18, 375-382 https://doi.org/10.1002/tox.10139 - Kaufman RC, Houck AG. Cech Jr. JJ. 2007. Effects of temperature and carbon dioxide on green sturgeon blood-oxygen equilibria. Environ Biol Fish 79, 201-210 https://doi.org/10.1007/s10641-006-9176-3
- Lee KS, Kita J and Ishimatsu A. 2003. Effects of lethal levels of environmental hypercapnia on cardio-vascular and blood-gas status in yellowtail, Seriola quinqueradiata. Zool Sci 20, 417-422 https://doi.org/10.2108/zsj.20.417
-
Michaelidis B, Spring A and P
$\ddot{o}$ rtner HO. 2007. Effects of long-term acclimation to environmental hypercapnia on extracellular acid-base status and metabolic capacity in Mediterranean fish Sparus aurata. Mar Biol 150, 1417-1429 https://doi.org/10.1007/s00227-006-0436-8 - Ormerod B and Angel M. 1996. Ocean storage of carbon dioxide. Workshop 2-Environmental Impact. IEA Greenhouse and Gas R&D Programme, Cheltenham, UK. 131
- Parsons TR, Maita Y and Lalli CM. 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon, Oxford, U.K., 141-149
- Randall DJ. 1970. Gas exchange in fish. In: Hoar WS and Randall DJ,_eds. Fish Physiology IV. Academic Press, New York, U.S.A., 253-286
-
Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng TH, Kozyr A, Ono T and Rios AF. 2004. The oceanic sink for anthropogenic CO
$_2$ . Science 305, 367-371 https://doi.org/10.1126/science.1097403 -
Sato T and Sato K. 2002. Numerical prediction of the dilution process and its biological impacts in CO
$_2$ ocean sequestration. Mar Sci Technol 6, 169-180 https://doi.org/10.1007/s007730200005