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A commercial diet supplemented with carotenoids and conjugated linoleic acid was fed to
rainbow trout (Oncorhynchus mykiss) for 8 weeks. To investigate the anti-oxidative properties
of these compounds, lipids from the muscle and viscera of the fish were subjected to different
assays. At 10 pg/mL, L-ascorbic acid exhibited 95% 2,2-diphenyl-1-picrylhydrazyl (DPPH)
radical-scavenging activity, while the tissue lipids showed little radical scavenging activity. At 50
and 100 pg/mL, the lipids of the muscles and viscera showed 11.7-22.6% and 11.3-24.9% DPPH
radical-scavenging activity, respectively. A lipid peroxidation inhibitory assay using the ferric
thiocyanate method was also performed in comparison with a-tocopherol at a concentration of
6.0 mg/mL. Our results indicate that the anti-oxidative property of the lipids in fish muscle,
which was 85.2% compared to 85.3% for the visceral lipids, was stronger than that of a-
tocopherol (74.3%) following 3 days of storage at 40°C.
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Introduction

Cumulative oxidative stress by reactive oxygen
radical species such as superoxide anion, hydrogen
peroxide, hydroxyl radical, and lipid peroxide causes
oxidative damage to lipids, proteins, and nucleic
acids. Such oxidative damage leads to degenerative
diseases, including diabetes mellitus, atherosclerosis,
arthritis, and cancer (Calliste et al., 2001). Most
organisms protect themselves from oxidaive stress
through the enzymatic activities of superoxide
dismutase, peroxidase, and catalase, and the
quenching and scavenging action of low-moleular-
weight compounds like a-tocopherol, ascorbic acid,
and polyphenols (Mau et al., 2002). One of the most
widely discussed roles of carotenoids is their
interaction with free radicals that initiate harmful
reactions such as lipid peroxidation, which is a chain
reaction involving short-lived carbon-centered as
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well as oxygen-centered free radicals. During lipid
peroxidation, carotenoids exert an anti-oxidative
effect, as evidenced by their reaction with free
peroxyl radicals in an additional chainbreaking
process (Qian et al., 2000).

In mammals and birds, immune responses have
been shown to increase with the addition of certain
nutrients to the diet (Krinsky, 1991). Carotenoids are
natural fat-soluble pigments that are widespread and
structurally quite diverse. Some carotenoids, including
f-carotene, are important sources of vitamin A for
animals. Because of their role in intermediary meta-
olism, carotenoids are considered to be essential
nutrients in some aquatic animals (Olson, 1989).
Carotenoids are also known to be indispensable
cellular components in microorganisms, algae, higher
plants, animals, and humans. Most expensive sea-
foods, including shrimp, lobster, crab, crayfish, trout,
salmon, redfish, red snapper, and tuna, have orange—
red integuments and/or flesh containing carotenoid
pigments (Haard, 1992).
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The relationships among diet, health, and lifestyle
are now key focal points for consumers, researchers,
and policy-makers alike given the widespread
increase in obesity and rise of diet-related chronic
diseases (Swinburn, 2009). Increasing the conjugated
linoleic acid (CLA) content of food products (e.g.,
milk, meat, and fish) may increase their nutritional
and therapeutic value. Such enhancement could
favorably influence the marketing of these value-
added designer foods. CLA isomers have been shown
to possess anti-oxidative properties (Lee et al., 1994),
inhibit carcinogen-DNA adduct formation (Josyula et
al., 1998), induce apoptosis (Ip et al., 1999), modu-
ate tissue fatty acid composition and eicosanoid
metabolism (Sugano et al., 1998), and affect the
expression and action of cytokines and growth factors
(Turek et al., 1998). Most in vitro and experimental
animal studies of CLA support its effectiveness in
reducing the risk of cancer. CLA prevents cancer in a
dose-dependent manner at levels up to 1%, with no
further beneficial effect at levels exceeding 1% (Ip et
al.,, 1991). When dietary CLA was fed to laboratory
animals at 0.05, 0.1, 0.25, and 0.5% by weight, as
little as 0.1% CLA was effective in reducing
mammary tumors. Moreover, CLA was more effect-
ive than B-carotene in inhibiting cellular proliferation.
Although CLA’s anticarcinogenic activity was once
thought to be due to its anti-oxidative properties,
recent data dispute this hypothesis (Zhang and Chen,
1997).

This study compared the anti-oxidative, free
radical-scavenging activities, and reducing power of
lipids from the muscles and viscera of rainbow trout
fed natural carotenoids extracted from ascidian tunic
and synthetic CLA for 8 weeks.

Materials and Methods

Chemicals

Hydrogen peroxide, ammonium thiocyanate,
thiobarbituric acid, sodium dodecyl sulfate, butyl
hydroxyl toluene, ferrous chloride, potassium

ferricyanide [K;3Fe(CN)g], ferrous sulfate chelate
solution, 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2-
deoxyribose, linoleic acid, a-tocopherol, and
butylated hydroxyanisole (BHA) were purchased
from Sigma-Aldrich Co. (St. Louis, MO, USA). All
of the reagents were of analytical grade.

Preparation of CLA and carotenoids

Soybean oil (SO) was purchased from a local
market (Jinju, Korea). CLA was chemically synthe-
sized (56% purity) from SO by high-temperature

alkaline isomerization (Park et al., 2000); the mixture
consisted of 46% ¢9,t11-CLA, 49% t10,c12-CLA,
and 5% other CLA isomers (¢9,c11-, ¢10,c12-, t9,t11-,
and t10,t12-CLA) as shown by gas chromatography
(GC 17A, Shimadzu Corp., Tokyo, Japan). Caro-
tenoids were extracted from ascidian tunic with
acetone (Choi et al., 1994). The total carotenoid
content was found to be 2,400 at 450 nm, the £ "
value of diethyl ether.

Experimental diets and fish

Rainbow trout (Oncorhynchus mykiss) was
obtained from an aquacultural farm in Yeongdong,
Korea. The experimental diets were prepared by
mixing appropriate amounts of CLA (1.0%) and
ascidian tunic extract (0.4%) with a commercial feed
(Woosung Feed Co., Nonsan, Korea). The test diets
for the fish were stored in a freezer (GC-124AGF, LG
Electronics, Seoul, Korea) at -30°C for 8 weeks until
use. Twenty rainbow trout (200£10 g each) were
placed in a round glass fiber aquarium (1 ton)
equipped with a water circulation and biological
filtration system. The diet composition and daily
growth index were as reported previously (Guo et al.,
2008).

Total lipid extraction

Total lipids were extracted by the method of Bligh
and Dyer (1959). The muscles and viscera of rainbow
trout cultured for 8 weeks were homogenized into
pooled pates. Total lipids were extracted from
homogenized tissue pates (50 g) in three volumes of
chloroform/methanol (2:1, v/v) using an Ultra-Turrax
tissue disrupter (T25, IKA Analysentechnik GmbH,
Staufen, Germany). The lipid content was determined
gravimetrically.

DPPH free radical-scavenging activity

The assay was carried out according to the method
of Oyaizu (1986) with a slight modification. Briefly,
1 mL of sample (0.12%, w/v) was added to 2.0 mL of
ethanol and 4.0 mL of 0.5 mM DPPH radical (Sigma-
Aldrich Co.) and 2.0 mL of 0.1 M acetic acid buffer
(pH 5.5). The mixture was then shaken vigorously
and left at room temperature for 30 min before
measuring the absorbance at 517 nm (UV-1700,
Shimadzu Corp.). The DPPH scavenging percent was
calculated as follows: DPPH scavenging activity
(%)=[(Control absorbance—Sample absorbance)/
(Control absorbance)]x 100.

Thiobarbituric acid-reactive substances
The oxidative rancidity of the fish lipids was mea-
sured by a 2-thiobarbituric acid reactive substance
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(TBARS) assay of malondialdehyde (MDA) as
described by Kosugi et al. (1992). An ethanol
solution (0.12 %, w/v) containing total lipids in a 12-
mL glass bottle was incubated at 40°C in a darkened
area. Three replicates of 0.1-mL aliquots of the
reaction mixture containing the lipid sample (0.12 %,
w/v) were combined with 0.2 mL of 8.1% sodium
dodecyl sulfate, 1.5 mL of acetate buffer (pH 3.5), 1.5
mL of 0.8% TBA in water, 50 puL of 0.8% BHT in
acetic acid, and 0.7 mL of 5 mM ferric chloride. The
mixture was kept at 5°C for 60 min then heated to
100°C for another 60 min. The red pigment was
extracted with 1.0 mL of water and 5.0 mL of n-
butanol-pyridine (15:1). After centrifugation at 3,000
rpm for 10 min, the absorbance of the upper layer
was measured (UV-1700, Shimadzu Corp.) at 532 nm
using the following equation: TBARS (umol/g)=
(Sample absorbance — Control absorbance) x 1.2393.

Reducing power

The reducing power was determined according to
the method of Oyaizu (1986). Briefly, the sample
solution (0.12%, w/v) was mixed with 2.5 mL of 0.2
M phosphate buffer (pH 6.6) and 2.5 mL of
potassium ferricyanide (1.0%) then incubated at 50°C
for 30 min. Next, 2.5 mL of trichloroacetic acid
(10%) was added to the mixture, which was then
centrifuged at 3,000 rpm for 10 min. Finally, 2.5 mL
of the upper layer was mixed with 2.5 mL of distilled
water and 0.5 mL of ferric chloride (0.1%) and the
absorbance was measured at 700 nm (UV-1700,
Shimadzu Corp.).

Inhibition of linoleic acid autoxidation

The lipid peroxidation inhibitory activity of the
lipids was measured in a linoleic acid emulsion
system according to the method of Oyaizu (1986). A
mixture of 0.5 mL of rainbow trout lipids (0.12%,
w/v) in absolute ethanol, 0.5 mL of 2.51% (w/v)
linoleic acid in 99.5% ethanol, 1.0 mL of 50 mM
sodium phosphate buffer (pH 7.0), and 0.5 mL of
distilled water were transferred to a screw-cap tube,
which was then placed in an oven at 40+1°C for 6
days in a dark room. Next, to 0.1 mL of the reaction
mixture, 9.7 mL of 75% ethanol, 0.1 mL of 30%
ammonium thiocyanate, and 0.1 mL of 20 mM
ferrous chloride in 3.5% hydrochloric acid were
added. After a 3 min incubation, the absorbance of
the solution (the presence of color indicated linoleic
acid oxidation) was measured at 500 nm using a
spectrophotometer. L-Ascorbic acid and a-tocopherol
(a natural anti-oxidative agent) were used as a
reference with 50 mM phosphate buffer (pH 7.0) as a

control. The anti-oxidative capacity for the inhibition
of peroxide formation in the system was assessed as
follows: Inhibition (%)=[1-(Sample absorbance/
Control absorbance)] x 100.

Statistical analysis

All experiments were performed three times. The
data were analyzed for the degree of variation with
significant differences based on analysis of variance
(ANOVA) with Tukey’s pairwise comparison test
(P<0.05) between treatment means using JMP
statistical discovery software (SAS Institute Inc.,
Cary, NC, USA).

Results

CLA and carotenoid contents

Five different diets containing fish oil in com-
bination with CLA and ascidian tunic carotenoids
were fed to rainbow trout for 56 days. Feed analyses
of the lipid and carotenoid contents performed at the
start and end of the feeding periods produced similar
results among the groups. The CP14 group, con-
sisting of 1.0% CLA and 0.4% carotenoids, was used
in a lipid oxidation stability experiment. The CLA
and carotenoid contents in the muscles and viscera
were found to be 3.72+0.9 and 8.35+0.9 g/100 g
tissue and 10.2+0.4 and 15.3+2.3 mg/kg tissue, res-
pectively.

DPPH free radical-scavenging activity

Proton radical scavenging is -an important
mechanism of anti-oxidation. DPPH was used to
determine the proton radical-scavenging activity of
the lipids because it possesses a proton-free radical
and shows a characteristic absorption at 517 nm. The
scavenging activities of the lipids and natural
antioxidants a-tocopherol and L-ascorbic acid toward
alkyl radicals are shown in Fig. 1. At 50 and 100
pg/mL, the activities of the lipids from muscle tissue
and viscera were 11.7-22.6 and 11.3-24.9%, res-
pectively. Thus, the scavenging activity of the DPPH
radicals increased as the concentration of the extract
was increased. In comparison to the commercial
antioxidants, the concentrations needed to obtain 80%
DPPH radical-scavenging activity for a-tocopherol
and L-ascorbic acid were 10 and 50 pg/mL, res-
pectively.

Thiobarbituric acid-reactive substances

Fish lipids are high in polyunsaturated fatty acids
(PUFAs) such as eicosapentaenoic acid (EPA, C20:
5n-3) and docosahexaenoic acid (DHA, C22:6n-3),



Effect of carotenoids and CLA against oxidative deterioration 261

120.00

S 10 (ug/mL)
FEE 25 (ugiml) a
100.00 | | memmg 50 (ug/mlL)
#8100 (ug/mlL)

e

80.00 1

N

o

60.0C

40.00 4

e

70
=

o

20.00

DPPH radical-scavenging activities (%)

L

0.00 -

Muscle Viscera L-Ascorbic acid a-Tocopherol

Fig. 1. DPPH radical-scavenging activities of muscle
and viscera lipids extracted from rainbow trout.

Columns with different superscript are significantly
different (P<0.05).

which are fairly susceptible to oxidation. The TBARS
test is based on the formation of colored products
when TBA is reacted with MDA or other TBA-
reactive substances presumed to be produced from
oxidized PUFA lipids. Fig. 2 shows that the TBARS
levels in the sample at 40°C increased from 0 to 48.6
umol/g lipids with the control on day 4, whereas the
TBARS values of the muscles and viscera reached
35.8 vs. 43.3 pmol/g lipids and 147.7 vs. 48.7 umol/g
lipids on days 5 and 6, respectively. After 6 days, the
TBARS values of the samples increased rapidly to
334.6 vs. 243.8 pmol/g lipids and 768.8 vs. 635.8
umol/g lipids for the muscle and viscera, respectively.
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Fig. 2. Reducing power of muscle and viscera lipids
extracted from rainbow trout. Lines having different
superscript are significantly different (P<0.05).

Reducing power of the lipids

In the reducing power assay, the presence of
reductants (antioxidants) in a sample results in the
reduction of Fe’'/ferricyanide complexes to the
ferrous form. Fe’' can therefore be monitored by

measuring the formation of Perl’s Prussian blue at
700 nm. Fig. 2 shows the reducing powers of the
lipids, a-tocopherol, and BHA. The reducing power
was found to be 0.07 for the lipids of the muscles and
viscera at a dose of 0.36 mg/mL versus 1.25 and 1.97
for a-tocopherol and BHA, respectively. In compare-
son, the reducing power was found to be 0.12 and
0.13, respectively, for the lipids of the muscles and
viscera at a dose of 0.6 mg/mL vs. 1.78 for a-
tocopherol, 2.65 for BHA, and 0.23 and 0.29 for the
lipids of the muscles and viscera at 1.2 mg/mL. Thus,
the reducing power of the lipids from rainbow trout
was very low.
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Fig. 3. Lipid peroxidation inhibition effect of muscle
and viscera lipids extracted from rainbow trout stored
at 40°C. Lines having different superscript are sig-
nificantly different (P <0.05).

Inhibition of linoleic acid autoxidation

The peroxidation of lipids is a complex process
that involves the formation and propagation of lipid
radicals, with lipid hydroperoxides formed as primary
oxidation products in the presence of oxygen. The
anti-oxidative activity of the lipids from the muscles
and viscera at 0.12% (w/v) against the peroxidation
of linoleic acid was investigated and compared to that
for a-tocopherol, a widely used natural anti-oxidative
agent. As shown in Fig. 4, the control sample showed
the lowest inhibition, while a-tocopherol had the
greatest effect (about 77.3% inhibition). The inhibit-
tory effect (58.6%) of visceral lipids obtained from
rainbow trout fed an experimental diet consisting of
CLA and carotenoids was higher than that of the
muscle lipids on day 5 in our linoleic acid emulsion
system.

Discussion

To investigate the oxidative stability of CLA and
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Fig. 4. TBARS activities of muscle and viscera lipids
extracted from rainbow trout stored at 40°C. Columns

with different superscript are significantly different
(P<0.05).

carotenoids, these compounds were used to create
five experimental diets. After 56 days of feeding, the
muscles and viscera of the fish were tested for
carotenoid deposition. Carotenoids were detected at
10.2 and 15.3 mg/kg of tissue (Table 1). A study of
the effects of diet, including various natural caro-
tenoid sources and synthetic astaxanthin, on the
pigmentation and growth of rainbow trout (O. mykiss)
was performed by Biiyiik¢apar et al. (2007). At the
end of their 60 day experiment, synthetic astaxanthin
was found to have caused the greatest carotenoid
accumulation in fish flesh (6.42 mg/kg) in all groups.
Variations in the muscle carotenoid concentration
may be explained by several factors, including the
nature of the carotenoids used, the dietary carotenoid
concentration, and the size or physiological status of
the fish.

Table 1. CLA and carotenoids contents in muscle and
viscera lipids extracted from rainbow trout fed for 8
weeks

Tissues Concentration
Muscle 3.7+06
CLA(g/1009) Viscera 84109
. : Muscle 102+ 04
Carotenoids (mg/kg) Viscera 153423

Mean =+ standard deviation of triplicate samples.

The role of free radical oxidative damage in the
physiology of human disease, which is a topic of
considerable current interest, has been suggested for a
wide spectrum of clinical conditions, ranging from
cancer to atherosclerosis, stroke, and several neuro-
degenerative diseases (Halliwell and Gutteridge,
1990). Of major interest in the reaction of carotenoids
with free radicals is whether carotenoids can provide

effective protection against diseases caused by
oxidative stress. Burton and Ingold (1984) reported
that carotenoids might act in lipid peroxidation as a
prooxidant at a high oxygen pressure and high caro-
tenoid concentration. In contrast, Chen and Djuric
(2001) reported that carotenoids are degraded by free
radicals but do not affect lipid peroxidation in
unilamellar liposomes under different oxygen ten-
sions. Under the conditions used in this study, the
carotenoid and CLA contents in the lipid extracts
were not significant at a level of 10 and 25 ug/mL;
however, they increased the DPPH radical-scaveng-
ing activity with increasing concentration (Fig. 1).
The concentration dependence of the DPPH radical-
scavenging activity was obvious for a-tocopherol but
not L-ascorbic acid. The reducing power of the tissue
lipid extracts was lower than that for BHA and o-
tocopherol (Fig. 2) because the reducing power of the
samples showed a strong correlation with the total
phenolic content of the samples (Chou et al., 2003).

The lipid peroxide retarding effect and TBARS
value for the lipids from the muscles and viscera were
similar after 6 days at 40°C (Figs. 3 and 4). Marine
lipids contain a high percentage of long-chain PUFAs
such as EPA and DHA. Because of their high degree
of unsaturation, these PUFAs are much more suscep-
tible to oxidation than linoleic acid, which is found in
vegetable oils (Cho et al.,, 1987). However, com-
bining CLA and carotenoids with the PUFAs in the
tissue lipids made them more stable than linoleic acid
(Fig. 3). The oxidation products of these PUFAs are
responsible for the development of rancidity by the
production of low-molecular-weight decomposed
compounds that impart undesirable flavors. Lipid per-
oxidation is a latent problem in marine lipid con-
sumption. Alternatively, the high levels of EPA and
DHA in marine lipids imply the presence of a strong
anti-oxidative system in marine animal tissues. The
ascidian tunic extract used in the present study
contained high percentages of EPA (3.51%) and DHA
(8.30%), with 10.0% (w/w) of the extract being polar
lipids (Choi et al., 1996). Phospholipids are generally
useful as synergists in reinforcing the anti-oxidative
activity of phenolic compounds such as a-tocopherol
(Bandarra et al., 1999).

CLA is a collective term used to describe one or
more positional and geometric isomers of linoleic
acid, an essential fatty acid. The oxidation rate of
CLA is temperature-dependent, but CLA in solution
is more stable to oxidation (Yurawecz et al., 1995).
No oxidation was detected for CLA in a polar solvent
(methanol) or in a 90:10 (v/v) mixture of methanol
and water. In an in vivo study, Ip et al. (1991) showed
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that CLA was as effective as vitamin E in inhibiting
the formation of TBARS in the mammary glands but
not in the liver. Given the results of this experiment,
the PUFAs in fish lipids are presumed to be rapidly
oxidized during storage at 40°C (Fig. 4). However,
the carotenoids and CLA contained in the lipids of the
muscles and viscera showed reduced PUFA oxidation
in the dark at 40°C. Therefore, rainbow trout fed an
experimental diet fortified with ascidian tunic caro-
tenoids and CLA may be used as a good source of
functional lipids rich in EPA, DHA, carotenoids, and
CLA. Given the continued rise in population size
combined with consumer expectations, global de-
mand for fish will continue to grow. Aquacultural
methods are expected to develop significantly in the
near future with the rise of fish as a functional food
with anticancer, anti-oxidative, bioremediative, and
immunoenhancing effects in the wake of the wide-
spread consumption of functional foods now on the
world market (Yalpani, 2002).
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