References
- Anderson, T. G. and Lund, J. (1997). Estimating continuous-time stochastic volatility models of the short-term interest rate, Journal of Econometrics, 77, 343-377 https://doi.org/10.1016/S0304-4076(96)01819-2
- Friedman, J. H. (1991). Multivariate adaptive regression splines, The Annals of Statistics, 19, 1-67 https://doi.org/10.1214/aos/1176347963
- Green, P. J. and Silverman, B. W. (1994). Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach, Chapman & Hall/CRC, London
- Hall, P. and Carroll, R. J. (1989). Variance function estimation in regression: The effect of estimating the mean, Journal of the Royal Statistical Society, Series B, 51, 3-14
- Kimeldorf, G. S. and Wahba, G. (1971). Some results on Tchebycheffian spline functions, Journal of Mathematical Analysis and its Applications, 33, 82-95 https://doi.org/10.1016/0022-247X(71)90184-3
- Liu, A., Tong. T. and Wang, Y. (2007). Smoothing spline estimation of variance functions, Journal of Computational and Graphical Statistics, 16, 312-329 https://doi.org/10.1198/106186007X204528
- Mercer, J. (1909). Functions of positive and negative type and their connection with the theory of integral equations, Philosophical Transactions of Royal Society of London, Serise A, 209, 415-446 https://doi.org/10.1098/rsta.1909.0016
- Vapnik, V. N. (1995). The Nature of Statistical Learning Theory, Springer, New York
- Wei, Y., Pere, A., Koenker, R. and He, X. (2006). Quantile regression methods for reference growth charts, Statistics in Medicine, 25, 1369-1382 https://doi.org/10.1002/sim.2271
- Xiang, D. and Wahba, G. (1996). A generalized approximate cross validation for smoothing splines with non-Gaussian data, Statistian Sinica, 6, 675-692