방전플라즈마 소결에 의한 자기 통전식 SiC계 세라믹 발열체 개발

Development of Electroconductive SiC Ceramic Heater by Spark Plasma Sintering

  • 발행 : 2009.04.01

초록

The composites were fabricated by adding 0, 15, 30, 45[vol.%] $ZrB_2$ powders as a second phase to SiC matrix. The physical, mechanical and electrical properties of electroconductive SiC ceramic composites by spark plasma sintering(SPS) were investigated. Reactions between ${\beta}$-SiC and $ZrB_2$ were not observed in the XRD and the phase analysis of the electroconductive SiC ceramic composites. The relative density of mono ${\beta}$-SiC, ${\beta}$-SiC+15[vol.%]$ZrB_2$, ${\beta}$-SiC+30[vol.%]$ZrB_2$ and ${\beta}$-SiC+45[vol.%]$ZrB_2$ composites are respectively 99.24[%], 87.53[%], 96.41[%] and 98.11[%] Phase analysis of the electroconductive SiC ceramic composites by XRD revealed mostly of ${\beta}$-SiC, $ZrB_2$ and weakly of $ZrO_2$ phase. The flexural strength showed the lowest of 114.44[MPa] for ${\beta}$-SiC+15[vol.%]$ZrB_2$ powders and showed the highest of 210.75[MPa] for composite no added with $ZrB_2$ powders at room temperature. The trend of the mechanical properties of the electroconductive SiC ceramic composites is accorded with the trend of the relative density. The electrical resistivity of the electroconductive SiC ceramic composites decreased with increased $ZrB_2$ contents. The electrical resistivity of mono ${\beta}$-SiC, ${\beta}$-SiC+15[vol.%]$ZrB_2$, ${\beta}$-SiC+30[vol.%]$ZrB_2$ and ${\beta}$-SiC+45[vol.%]$ZrB_2$ composites are respectively $4.57{\times}10^{-1},\;2.13{\times}10^{-1},\;2.68{\times}10^{-2}\;and\;1.99{\times}10^{-2}[{\Omega}{\cdot}cm]$ at room temperature. The electrical resistivity of mono ${\beta}$-SiC and ${\beta}$-SiC+15[vol.%]$ZrB_2$ are negative temperature coefficient resistance(NTCR) in temperature ranges from $25[^{\circ}C]\;to\; 100[^{\circ}C]$. The electrical resistivity of ${\beta}$-SiC+30[vol.%]$ZrB_2$ and ${\beta}$-SiC+45[vol.%]ZrB_2$ are positive temperature coefficient resistance(PTCR) in temperature ranges from $25[^{\circ}C]\;to\;100[^{\circ}C]$. It is convinced that ${\beta}$-SiC+30[vol.%]$ZrB_2$ composites by SPS for heater or ignitors can be applied.

키워드

참고문헌

  1. Patricia A. Hoffman, 'Thenno Elastic Properties of Silcon Carbide-Titanium Diboride Particulate Composites' M. S Thesis, Pennslyvania State University, 1992
  2. Hideto Hashiguchi and Hisashi Kimugasa 'Electrical Resistivity of a-SiC Ceramics Added with NiO' J. Ceram. Soc. Japan, 102(2), pp. 160-'64, 1994 https://doi.org/10.2109/jcersj.102.160
  3. M. Nakamura, I Shigematsu, K. Kanayama and Y. Hirai 'Surface Damage in $ZrB_2$-based Composite Ceramics Induced by Electro-Discharge Machining' J. Mater. Sci., 26, pp. 6078-6082, 1991 https://doi.org/10.1007/BF01113887
  4. Y. D. Shin, J. Y. Ju and C. Hwang, 'The Properties of $\beta-SiC-ZrB_2$ Electroconductive Ceramic Composites with $Al_2O_3+Y_2O_3$Contents' Trans. KIEE, Vol. 49C, No.9, pp. 516-522, 2000
  5. Y. D. Shin and J. Y. Ju, 'Effect of In Situ YAG on Microstructure and Properties of the Pressureless-Sintered SiC-ZrB2 Electroconductive Ceramic Composites' Trans. KIEE, Vol. 55C, No. 11, pp. 505-513, 2006
  6. Y. D. Shin and J. Y. Ju, 'Effect of Annealing Temperature on Microstructure and Properties of the Pressureless-Sintered $SiC-ZrB_2$ Electroconductive Ceramic Composites' Trans. KIEE, Vol. 55C, No.9, pp. 434-441, 2006
  7. Y. D. Shin, J. Y. Ju and T. H. Ko, 'Effects of Boride on Microstructure and Properties of the Electroconductive Ceramic Composites of Liquid-Sintered Silicon Carbide System' Trans. KIEE, Vol. 56C, No.9, pp. 1602-1608, 2007
  8. Yong-Deok Shin and Jing-Young Ju, 'Properties and Manufacture of the $\beta-SiC-ZrB_2$ Composites Densified by Liquid-Phase Sintering' Trans. KIEE. Vol. 48C, No2 pp.93-97, 1998
  9. K. A. Khor, L. G. Yu, & S. H. Chan and X. J. Chen, 'Densification of plasma sprayed YSZ electrolytes by spark plasma sintering(SPS)' J. Am, Ceram. Soc. 23 1855-1863, 2003 https://doi.org/10.1016/S0955-2219(02)00421-1
  10. Alireza Rezaie, William G. Fahrenholtz and Gregory E. Hilmas, 'Oxidation of Zirconium Diboride-Silicon Carbide at 1500$^{\circ}C$ at a Low Partial Pressure of Oxygen' J. Am. Ceram. Soc., 89(10), pp. 3240-3245, 2006 https://doi.org/10.1111/j.1551-2916.2006.01229.x
  11. F. Monteverde and A. Bellosi 'Oxidation of $ZrB_2$-Based Ceramics in Dry Air' Journal of The Electrochemical Society., 150(11), B552-B559, 2003 https://doi.org/10.1149/1.1618226
  12. Diletta. Sciti, Cesare. Melandri and Alida Bellosi, 'Propertise of $ZrB_2$-Reinforced Tenary Composites', Adanced Engineering Materials, 6(9), pp. 775-781, 2004 https://doi.org/10.1002/adem.200400039
  13. Cathleen Mroz, 'Zirconium Diboride' J. Am. Ceram. Soc., Bull., 74(6), pp.164-165, 1995
  14. F. Monteverde, A. Bellosi and S. Guicciardi, 'Processing and Properties of Zirconium Diboride-based Composites', Journal of the European Ceramic Society, 22. pp.279-288, 2002 https://doi.org/10.1016/S0955-2219(01)00284-9
  15. J. B. Hurst and S. Dutta, 'Simple Processing Method for High-strength Silicon Carbide', J. Am. Ceram. Soc., 70(11). pp. C303-308, 1987 https://doi.org/10.1111/j.1151-2916.1987.tb05642.x
  16. M. Nader, F. Aldinger and M. J. Hoffmann, 'Influence of the a/13 Phase Transfonnation on Microstructural Development and Mechanical Properties of Liquid Phase Sintered Silicon Carbide', J. Mat. Sci., 34. pp. 1197-1204, 1999 https://doi.org/10.1023/A:1004552704872
  17. Y. W. Kim, M. Mitomo, H. Emoto, J. G. Lee, 'Effect of Initial a-Phase Content on Microstructure and Mechanical Properties of Sintered Silicon Carbidea', J. Am. Ceram. Soc., 81(12), pp.3136-3140, 1998 https://doi.org/10.1111/j.1151-2916.1998.tb02748.x
  18. Y. W. Kim, M. Mitomo and H. Hirotsuru, 'Microstructure Development of Silicon Carbide Containing Large Seed Grains', J. Am. Ceram. Soc., 80[1], pp. 99-105, 1997 https://doi.org/10.1111/j.1151-2916.1997.tb02796.x
  19. Weimin Wang, Zhengyi Fu, Hao Wang and Runzhang Yuan, 'Influence of Hot Pressing Sintering Temperature and Time on Microstructure and Mechanical Properties of $TiB_2$ Ceramics', Journal of the European Ceramic Society, 22. pp. 1045-1049, 2002 https://doi.org/10.1016/S0955-2219(01)00424-1
  20. Akira Kondo, 'Electrical Conduction Mechanism in Recrystallized SiC', Journal of the Ceramic Society of Japan. Int. Edition, Vol. 100, pp.1204-1208, 1993