폭우에 의해 발생된 강 제방 주변 변형의 3차원 GPR 영상화: 일본 사이타마현의 아라강에 대한 현장적용사례

A 3D ground penetrating radar imaging of the heavy rainfall-induced deformation around a river levee: a case study of Ara River, Saitama, Japan

  • 발행 : 2009.02.28

초록

이 논문은 2007년 9월에 발생한 태풍이 동반한 폭우 후에 일본 사이타마현의 아라강 유역의 제방근처 지형변형 지역에서 실시된 3차원 GPR 탐사에 관하여 기술하였다. 폭우에 의해 생긴 포장된 도로 위의 수직균열 주변에 근접한 4방향의 2차원 탐사들로 이루어진 고밀도의 3차원 GPR 탐사가 수행되었다. 2차원 탐사의 방향은 각각 도로에 대해 $0^{\circ}$, $90^{\circ}$. $45^{\circ}$ 그리고 $-45^{\circ}$로, 측선 사이의 간격은 0.5 m 이하로 설정하였다. 3차원적인 지하구조가 3차원 Kirchhoff 형태의 구조보정 자료처리 기법을 통하여 정밀하게 영상화 되었다. 그 결과 포장포로 밑의 폭우로 인해 발생된 균연들의 위치와 수직 연결성 등을 명확하게 확인 할 수 있었다. 이 영상은 균열 형성과정의 매커니즘을 이해하는데 큰 도움을 줄것으로 기대된다. 또한 3차원 GPR 탐사 결과 공기로 채워진 공동이 존재하지 않는 것으로 확인되어 2차적인 피해가 발생될 가능성은 매우 낮은 것으로 판명되었다.

This paper describes a three-dimensional ground penetrating radar (GPR) survey carried out around a levee of the Ara River in Saitama, Japan, where deformation of the ground was observed after heavy rainfall associated with the typhoon of September 2007. The high-density 3D GPR survey was conducted as a series of closely adjacent four directional sets of 2D surveys at an area surrounding vertical cracks on the paved road caused by deformations induced by heavy rain. The survey directions of the 2D surveys were 0, 90, 45, and -45 degrees with respect to the paved road and the intervals between lines were less than 0.5 m. The 3D subsurface structure was accurately imaged by the result of data processing using Kirchhoff-type 3D migration. As a result, locations and vertical continuities of the heavy rainfall induced cracks in the paved road were clearly imaged. This will be a great help in considering the generation mechanisms of the cracks. Moreover, the current risk of a secondary disaster was found to be low, as no air-filled cavities were detected by the 3D GPR survey.

키워드

참고문헌

  1. Arai, I., Tomizawa, Y., and Goto, S., 2006, Landmine detection by impulseradar using array antenna: Journal of the Society of Instrument andControl Engineers, 45, 498–503.
  2. Atekwana, E. A., Sauck, W. A., and Werkema, D. D., 2000, Investigations ofgeoelectrical signatures at a hydrocarbon contaminated site: Journal of Applied Geophysics, 44, 167–180. doi: 10.1016/S0926-9851(98)00033-0
  3. Cook, J. C., 1960, Proposed monocycle-pulse VHF radar for airborne ice andsnow measurements: Transactions of the American Institute of ElectricalEngineers Part 1. Communication and Electronics, 79, 588–594
  4. Cook, J. C., 1975, Radar transparencies of mine and tunnel rocks: Geophysics,40, 865–885. doi: 10.1190/1.1440573
  5. Evans, S., 1963, Radio techniques for the measurement of ice thickness: PolarRecord, 3, 406–410
  6. Hayashi, K., Inazaki, T., and SEGJ Levee Consortium, 2007, Application ofintegrated geophysical techniques to vulnerability assessment of levee (Part 5): Evaluation of surface-wave method by S-wave velocity measurements during levee excavation: Proceedings of the 117th SEGJ conference, 111–114
  7. Inazaki, T., 2006a, An integrated geophysical investigation of a levee: Proceedings of the 114th SEGJ conference, 234–237
  8. Inazaki, T., 2006b, Utilization of land streamer surveying for the vulnerabilityassessment of levee: Proceedings of the 115thSEGJconference, 265–268
  9. Inazaki, T., and SEGJ Levee Consortium, 2007, Application of integratedgeophysical techniques to vulnerability assessment of levee (Part 2): Integrated geophysical surveying along the levee of Chikuma River: Proceedings of the 116th SEGJ conference, 112–115
  10. Nakauchi, T., Nozu, T., Suzuki, M., Uesaka, S., and Arai, I., 2005, Development of the real-time radar image processing for a horizontal drilling machine: Geophysical Exploration (BUTSURI-TANSA), 58, 475–490 https://doi.org/10.3124/segj.58.475
  11. Nobes, D. C., 2000, The search for 'yvonne': a case example of the delineation of a grave using near-surface geophysical methods: Journal of Forensic Sciences, 45, 715–721
  12. Pipan, M., Barradello, L., Forte, E., Prizzon, A., and Finetti, I., 1999, 2-D and3-D processing and interpretation of multi-fold ground penetrating radar data: a case history from an archaeological site: Journal of Applied Geophysics, 41, 271–292. doi: 10.1016/S0926-9851(98)00047-0
  13. Pipan, M., Forte, E., Dal Moro, M., Sugan, M., and Finetti, I., 2003, Multifoldground penetrating radar and resistivity to study the stratigraphy of shallow unconsolidated sediments: The Leading Edge, 25, 876–881
  14. Sato, M., Hamada, Y., Feng, X., Kong, F.-N, Zeng, Z., and Fang, G., 2004,GPR using an array antenna for landmine detection: Near Surface Geophysics, 2, 7–13
  15. Sato, M., Feng, X., Kobayashi, T., and Takahashi, K., 2006, Application ofGPR and wave signal processing and their applications to landmine detection: Journal of the Society of Instrument and Control Engineers, 45, 491–497
  16. Seren, S., Eder-Hintrleitner, A., Neubauer, W., and Groh, S., 2004, Combinedhigh-resolution magnetics and GPR surveys of the roman town of Flavia Solva: Near Surface Geophysics,, 2, 63–68
  17. Stern, W., 1929, Versuch einer elektrodynamischen Dickenmessung vonGletschereis: Gerlands Beitrage zur Geophysik, 27, 292–333
  18. Takahashi, T., Tanaka, S., Yamamoto, T., Itokawa, M., Funabiki, S., and Kyoto University River Embankment Research Consortium, 2007, Study on geophysical methods and instruments for investigation of river embankments (Part 1): Project overview and summary of 2006 study: Proceedings of the 117th SEGJ conference, 119–122
  19. Watanabe, F. and SEGJ Levee Consortium, 2007, Application of integrated geophysical techniques to vulnerability assessment of levee (Part 1): Role of integrated geophysics and the SEGJ Levee Consortium: Proceedings of the 116th SEGJ conference, 277–280
  20. Whiting, B. M., McFarland, D. P., and Hackenberger, S., 2001, ThreedimensionalGPR study of a prehistoric site in Barbados, West Indies: Journal of Applied Geophysics, 47, 217–226. doi: 10.1016/S0926-9851 (01)00066-0
  21. Yokota, T., Inazaki, T., and Onishi, K., 2006, A GPR experiment for assessment of a river embankment – An example at Kokai River, Ibaraki: Proceedings of the 115th SEGJ conference, 269–272