DOI QR코드

DOI QR Code

Electrochemical Characteristics of Home-Made Bipolar Plate and Its Relationship with Fuel Cell Performance

탄소성형 Bipolar Plate의 전기화학적 특성과 연료전지 성능 비교

  • Kwon, Young-Kook (Electrochemical Reaction and Technology Laboratory (ERTL), Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Lee, Jae-Kwang (Electrochemical Reaction and Technology Laboratory (ERTL), Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Ji, Duk-Jin (Seunglim Carbon Metal Co., Ltd.) ;
  • Lee, Jae-Young (Electrochemical Reaction and Technology Laboratory (ERTL), Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST))
  • 권영국 (광주과학기술원 환경공학과 ERTL) ;
  • 이재광 (광주과학기술원 환경공학과 ERTL) ;
  • 지덕진 (승림카본금속) ;
  • 이재영 (광주과학기술원 환경공학과 ERTL)
  • Published : 2009.02.28

Abstract

The effect of physico-electrochemical properties of carbon bipolar plate(BPP) on hydrogen and formic acid fuel cell performance has been investigated. BPP made of conventional graphite and carbon fiber composite were compared with the factors of interfacial contact resistance (ICR), corrosion behaviours, and hydrophobicity. Among them, the ICR of carbon fiber composite BPP has 50% higher than conventional graphite and the surface of carbon fiber composite BPP became rougher due to weaker corrosion resistance. Fuel cell performance was strongly dependent of ICR value of carbon bipolar plate.

본 연구에서는 탄소성형 분리판의 물리화학적, 전기화학적 특성을 분석하여 수소 및 개미산연료 전지의 성능에 미치는 영향을 알아보았다. 기존 기계가공 탄소분리판과 탄소복합소재 탄소성형 분리판의 접촉저항, 부식특성, 소수성을 비교 평가하였다. 특히, 현재 연구개발 중인 탄소복합소재 성형분리판의 경우 계면접촉저항이 기계가공 분리판보다 1.5배 높게 나타났으며, 내식성 실험에서는 산에 취약하여 분리판 표면이 거칠어지고 결정성이 감소하였다. 연료전지의 성능은 분리판의 계면접촉저항에 크게 영향을 받았으며, 계면저항이 적은 기계가공 분리판이 수소 및 개미산 연료 전지에서 높은 성능을 나타냈다.

Keywords

References

  1. I. Bar-On, R. Kirchain, and R. Roth, J. Power Sources, 109, 71 (2002) https://doi.org/10.1016/S0378-7753(02)00062-9
  2. X. Li, and I. Sabir, Int. J. Hydrogen Energy, 30, 359 (2005) https://doi.org/10.1016/j.ijhydene.2004.09.019
  3. Separator Development Trends, Fuel Cell Japan Report (2006)
  4. I. U. Hwang, H. N. Yu, S. S. Kim, D. G. Lee, J. D. Suh, S. H. Lee, B. K. Ahn, S. H. Kim, and T. W. Lim, J. Power Sources, 184, 90 (2008) https://doi.org/10.1016/j.jpowsour.2008.05.088
  5. E. A. Cho, U. -S. Jeon, S. -A. Hong, I. -H. Oh, and S. -G. Kang, J. Power Sources, 142, 177 (2005) https://doi.org/10.1016/j.jpowsour.2004.10.032
  6. Y. Hung, K. M. El-Khatib, and H. Tawfik, J. Power Sources, 163, 509 (2006) https://doi.org/10.1016/j.jpowsour.2006.09.013
  7. E. A. Cho, U. -S. Jeon, H. Y. Ha, S. -A. Hong, and I. -H. Oh, J. Power Sources, 125, 178 (2004) https://doi.org/10.1016/j.jpowsour.2003.08.039
  8. R. Blunk, M. H. A. Elhamid, D. Lisi, and Y. Mikhail, J. Power Sources, 156, 151 (2006) https://doi.org/10.1016/j.jpowsour.2005.04.041
  9. P. H. Maheshwari, R. B. Mathur, and T. L. Dhami, J. power sources, 173, 394 (2007) https://doi.org/10.1016/j.jpowsour.2007.04.049
  10. S. Uhm, Y. Kwon, S. -T. Chung, and J. Lee, Electrochim. Acta, 53, 5162 (2008) https://doi.org/10.1016/j.electacta.2008.02.052
  11. C. -Y. Chung, S. -K. Chen, T. -S. Chin, T. -H. Ko, S. -W. Lin, W. -M. Chang, and S. -N. Hsiao, J. Power Sources, 186, 393 (2009) https://doi.org/10.1016/j.jpowsour.2008.10.047
  12. C. A. Reiser, L. Bregoli, T. W. Patterson, J. S. Yi, J. D. Yang, M. L. Perry, and T. D. Jarvi, Electrochem. Solid-State Lett., 8, A273 (2005) https://doi.org/10.1149/1.1896466
  13. L. M. Roen, C. H. Paik, and T. D. Jarvi, Electrochem. Solid-State Lett., 7, A19 (2004) https://doi.org/10.1149/1.1630412
  14. K. H. Kangasniemi, D. A. Condit, and T. D. Jarvi, J. Electrochem. Soc., 151, E125 (2004) https://doi.org/10.1149/1.1649756
  15. D. A. Shores and G. A. Deluga, in: W. Vielstich, H.A. Gasteiger, A. Lamm (Eds.), Handbook of Fuel Cells, vol. 3, John Wiley & Sons, (2003) pp.273
  16. M. Xiao, Y. Lu, S. J. Wang, Y. F. Zhao, and Y. Z. Meng, J. Power Sources, 160, 165 (2006) https://doi.org/10.1016/j.jpowsour.2006.01.085

Cited by

  1. Effects of binder type and heat treatment temperature on physical properties of a carbon composite bipolar plate for PEMFCs vol.14, pp.2, 2013, https://doi.org/10.5714/CL.2013.14.2.110