DOI QR코드

DOI QR Code

Primer RNA Synthesis by E. coli RNA Polymerase on the SSB-coated 229-nt ssi Signal of Lactococcal Plasmid pGKV21

Lactococcal plasmid pGKV21의 SSB-coated 229-nt ssi signal 상에서 E. coli RNA polymerase에 의한 시발체 RNA 합성

  • Jeong, Jin-Yong (Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Kim, Eun-Sil (Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Kim, Sam-Woong (Division of Biological Sciences, Pusan National University) ;
  • Kang, Ho-Young (Division of Biological Sciences, Pusan National University) ;
  • Bahk, Jeong-Dong (Division of Applied Life Sciences, Graduate School of Gyeongsang National University)
  • 정진용 (울산대학교 의과대학 서울아산병원 아산생명과학연구소) ;
  • 김은실 (울산대학교 의과대학 서울아산병원 아산생명과학연구소) ;
  • 김삼웅 (부산대학교 생명과학부) ;
  • 강호영 (부산대학교 생명과학부) ;
  • 박정동 (경상대학교 대학원 응용생명과학부)
  • Published : 2009.03.31

Abstract

Plasmid pGKV21 contains a 229-nucleotide (nt) single-strand DNA initiation (ssi) signal. Using asymmetric PCR, we prepared a small single-stranded (ss) DNA fragment of the ssi signal and, using the 229-nt ssDNA fragment, determined the requirements of RNA polymerase for priming and DNA-protein interaction. The ssi fragment prepared was able to generate primer RNAs with almost the same efficiency as the $M13{\Delta}lac182/229$ phage DNA. However, the cssi (complementary strand of the ssi signal) fragment could not synthesize primer RNAs. This result suggests that the 229-nt ssi signal functions in a strand specific manner. Gel retardation and DNase I footprinting demonstrated that the synthesized ssi fragment could interact with both E. coli RNA polymerase and SSB protein to synthesize primer RNA. In Escherichia coli [pWVAp], an addition of rifampicin resulted in an accumulation of ssDNA, indicating that the host-encoded RNA polymerase is involved in the conversion of ssDNA to double-stranded plasmid DNA.

플라스미드 pGKV21에는 229-nt single-strand DNA initiation (ssi) signal이 존재한다. Asymmetric PCR 기법으로 합성된 229-nt ssDNA 단편을 이용하여 실제로 RNA polymerase에 의한 priming ability와 protein interaction을 확인하였다. in vitro primer RNA 합성 실험 결과, 229-nt ssDNA 단편은 filamentous M13 phage의 주형 DNA에서와 비슷한 효율로 시발체 RNA를 합성하였으며, 이 반응은 strand-specific하게 이루어졌다. DNase I footprinting과 gel retardation 실험 결과, RNA polymerase와 SSB 단백질은 229-nt ssDNA 단편에 stable interaction을 하며, 시발체 RNA를 합성하였다. 또한, in vivo 조건 하에서 RNA polymerase의 저해제인 rifampicin을 처리하여 세포내에 ssDNA 중간체가 집적되는 정도를 비교하여 본 결과, 플라스미드 pGKV21은 rifampicin-sensitive RNA polymerase가 상보가닥 합성에 관여 함을 보여 주었다.

Keywords

References

  1. Arai, K., R. Low, J. Kobori, J. Shlomai, and A. Kornberg. 1981. Mechanism of dnaB protein action. V. Association of dnaB protein, protein n', and other repriming proteins in the primosome of DNA replication. J. Biol. Chem. 256, 5273-5280
  2. Bouche, J. P., K. Zechel, and A. Kornberg. 1975. dnaG gene product, a rifampicin-resistant RNA polymerase, initiates the conversion of a single stranded coliphage DNA to its duplex replication form. J. Biol. Chem. 250, 5995-6001
  3. Bujalowski, W. and T. M. Lohman. 1986. Escherichia coli single-strand binding protein forms multiple, distinct complexes with single-stranded DNA. Biochemistry 25, 7799-7802 https://doi.org/10.1021/bi00372a003
  4. Bujalowski, W., L. B. Overman, and T. M. Lohman. 1988. Binding mode transitions of Escherichia coli single strand binding protein-single-stranded DNA complexes. Cation, anion, pH, and binding density effects. J. Biol. Chem. 263, 4629-4640
  5. Chase, J. W. and K. R. Williams. 1986. Single-stranded DNA binding proteins required for DNA replication. Annu. Rev. Biochem. 55, 130-136
  6. Chrysogelos, S. and J. D. Griffith. 1982. Escherichia coli single- strand binding protein organizes single-stranded DNA in nucleosome-like units. Proc. Natl. Acad. Sci. USA 79, 5803-5807 https://doi.org/10.1073/pnas.79.19.5803
  7. Fiddes, J. C., B. G. Barrell, and G. N. Godson. 1978. Nucleotide sequences of the separate origins of synthesis of bacteriophage G4 viral and complementary DNA strands. Proc. Natl. Acad. Sci. USA 75, 1081-1085 https://doi.org/10.1073/pnas.75.3.1081
  8. Geider, K., E. Beck, and H. Schaller. 1978. An RNA transcribed from DNA at the origin of phage fd single strand to replicative form conversion. Proc. Natl. Acad. Sci. USA 75, 645-649 https://doi.org/10.1073/pnas.75.2.645
  9. Glucksmann, M. A., X. Dai, P. Maekiewicz, C. Malone, and L. B. Rothman-Denes. 1996. E. coli SSB activates N4 virion RNA polymerase promoters by stabilizing a DNA hairpin required for promoter recognition. Cell 84, 147-154 https://doi.org/10.1016/S0092-8674(00)81001-6
  10. Glucksmann, M. A., P. Maekiewicz, C. Malone, and L. B. Rothman-Denes. 1992. Specific sequences and a hairpin structure in the template strand are required for N4 virion RNA polymerase promoter recognition. Cell 70, 491-500 https://doi.org/10.1016/0092-8674(92)90173-A
  11. Godson, G. N., B. G. Barrell, R. Staden, and J. C. Fiddes. 1978. Nucleotide sequence of bacteriophage G4 DNA. Nature (London) 276, 236-247 https://doi.org/10.1038/276236a0
  12. Griffith, J. D., L. D. Harris, and J. Rigister, III. 1984. Cold Spring Harbor Symp. Quant. Biol. 49, 553-559 https://doi.org/10.1101/SQB.1984.049.01.062
  13. Jeong, J. Y., G. M. Yoon, H. S. Seo, M. J. Cho, H. Sakai, T. Komano, and J. D. Bahk. 1997. Functional features of an ssi signal of plasmid pGKV21 in E. coli. J. Bacteriol. 249, 293-300
  14. Kornberg, A. and T. A. Baker. 1992. DNA Replication, 2nd ed. W. H. Freeman & Co., New York
  15. Leenhouts, K. J., B. Tolner, S. Bron, J. Kok, G. Venema, and J. F. M. L. Seeger. 1991. Nucleotide sequence and characterization of the broad-host-range lactococcal plasmid pWV01. Plasmid 25, 55-66
  16. Lohman, T. M. and L. B. Overman. 1985. Two binding modes in Escherichia coli single strand binding protein-single stranded DNA complexes. Modulation by NaCl concentration. J. Biol. Chem. 260, 3594-3603
  17. Masai, H., N. Nomura, Y. Kubota, and K. Arai. 1990. Role of $\phi$X174 type primosome- and G4 type primase-dependent primings in initiation of lagging and leading strand syntheses of DNA replication. J. Biol. Chem. 265, 15124-15133
  18. Maxam, A. M. and W. Gilbert. 1980. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 65, 499-560 https://doi.org/10.1016/S0076-6879(80)65059-9
  19. Seegers, J. F. M. L., A. C. Zhao, W. J. J. Meijer, S. M. Khan, G. Venema, and S. Bron. 1995. Structural and functional analysis of the single-strand origin of replication from the lactococcal plasmid pWV01. Mol. Gen. Genet. 249, 43-50 https://doi.org/10.1007/BF00290234
  20. Sims, J. and E. W. Benz, Jr. 1980. Initiation of DNA replication by the Escherichia coli dnaG protein: evidence that tertiary structure is involved. Proc. Natl. Acad. Sci. USA 77, 900-904 https://doi.org/10.1073/pnas.77.2.900
  21. Sims, J., D. Capon, and D. Dressler. 1979. dnaG (primase)- dependent origins of DNA replication: nucleotide sequences of the negative strand initiation sites of bacteriophages St-1, $\phi$K, and alpha 3. J. Biol. Chem. 254, 12615-12628
  22. Wickner, S. 1977. DNA or RNA priming of bacteriophage G4 DNA synthesis by Escherichia coli DnaG protein. Proc. Natl. Acad. Sci. USA 74, 2815-2819 https://doi.org/10.1073/pnas.74.7.2815
  23. Williams, K. R., J. B. Murphy, and J. W. Chase. 1984. Characterization of the structural and functional defect in the Escherichia coli single-stranded DNA binding protein encoded by the ssb-1 mutant gene. Expression of the ssb-1 gene under lambda pL regulation. J. Biol. Chem. 259, 11804-11811