VEGF 조절을 통한 육계 추출물의 신생혈관 형성 촉진 작용

Stimulatory Efect of Cinnamomum cassia Extract on Angiogenesis Through Regulation of VEGF

  • 고정민 (경희대학교 한의과대학 침구학교실) ;
  • 이상훈 (경희대학교 한의과대학 침구학교실) ;
  • 백용현 (경희대학교 한의과대학 침구학교실) ;
  • 최도영 (경희대학교 한의과대학 침구학교실)
  • Ko, Jeong-Min (Department of Acupuncture and Moxibustion, College of Oriental Medicine, Kyung Hee University) ;
  • Lee, Sang-Hoon (Department of Acupuncture and Moxibustion, College of Oriental Medicine, Kyung Hee University) ;
  • Baek, Yong-Hyeon (Department of Acupuncture and Moxibustion, College of Oriental Medicine, Kyung Hee University) ;
  • Choi, Do-Young (Department of Acupuncture and Moxibustion, College of Oriental Medicine, Kyung Hee University)
  • 발행 : 2009.02.20

초록

목적 : 한의학 분야에서 육계(CCE: Cinnamomum cassia)는 혈류 순환이 저하된 상태에 널리 쓰이는 약재이다. 이 연구에서는 CCE와 그 활성 혼합물인 cinnamic acid가 in vitro와 in vivo에서 발휘하는 신생혈관 형성 작용에 대해 알아보고자 한다. 방법 : CCE와 CA의 신생혈관형성 작용을 알아보기 위하여 Human unbilical endothelial cells(HUVECs)와 Bovine arterial endothelial cells(BAECs) 그리고 Matrigel assay를 이용하였다. 결과 : In vitro에서 CCE와 그 활성 혼합물은 HUVEC 증식, 이동, 모세혈관-유사 관 형성을 유도한다. CCE에서의 25-50% 증가(1 또는 10ng/ml 용량에서)는 CA에서 증식과 유사하게 나타났다. HUVEC에서는 증식이 뚜렷하게 나타났으나 BAEC에서는 증식이 뚜렷하게 나타나지 않아 증식 효과는 내피세포의 기원에 따라 다른 것으로 나타났다. BAEC는 CCE와 CA에서 증식은 보이지 않았지만 이동과 모세혈관-유사 관 형성 또는 분화를 보였다. 또한 CCE와 CA는 HUVEC에서 VEGF 발현과 Flk-1/KDR 발현을 각각 2.2배와 2.5배 증가시켰다. 결론 : CCE와 그 활성 혼합물은 in vivo와 in vitro에서 혈관 내피세포의 VEGF 발현을 통하여 신생혈관 형성 작용을 유도하며 이는 앞으로 다른 한약 추출물의 신생혈관형성 촉진 작용 연구에 모델을 제시할 것으로 보인다.

키워드

참고문헌

  1. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 2005 ; 1 : 27-31. https://doi.org/10.1038/nm0195-27
  2. Risau W. Mechanisms of angiogenesis. Nature. 1997 ; 386 : 671-4. https://doi.org/10.1038/386671a0
  3. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med. 2000 ; 6 : 389-95. https://doi.org/10.1038/74651
  4. Carmeliet P. and Jain, RK Angiogenesis in cancer and other diseases. Nature. 20009 ; 407 : 249-57. https://doi.org/10.1038/35025220
  5. Conway EM, Collen D and Carmeliet P. Molecular mechanisms of blood vessel growth. Cardiovasc Res. 2001 ; 4 : 507-21.
  6. Gordon JD, JL, Foulk RA, Taylor RN and Jaffe RB. Angiogenesis in the human female reproductive tract. Obstet Gynecol Surv. 1995 ; 50 : 688-97. https://doi.org/10.1097/00006254-199509000-00024
  7. Folkman J. Tumor angiogenesis : Therapeutic implications. N Engl J Med. 1971 : 285 : 1182. https://doi.org/10.1056/NEJM197111182852108
  8. Weidner NJP, Welch WR and Folkman J. Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma. N Engl J Med. 1991 ; 324 : 1-8. https://doi.org/10.1056/NEJM199101033240101
  9. D’Amore PA and Thompson RW. Mechanisms of angiogenesis. Annu Rev Physiol. 1987 ; 49 : 453-64. https://doi.org/10.1146/annurev.ph.49.030187.002321
  10. Klagsbrun M. Regulators of angiogenesis : Stimulators, inhibitors and extracellular matrix. J Cell Biochem. 1991 ; 47 : 199-200.
  11. Klagsbrun M. (1991b) Angiogenic factors : Regulators of blood supply-side biology. FGF, endothelial cell growth factors and angiogenesis : A keystone symposium, Keystone. USA : New Biol. 1991 ; 3 : 745-9.
  12. Khan, Alam, Safdar, Mahpara, Ali Khan, Mohammad Muzaffar, Khattak, Khan Nawaz, and Anderson, Richard A. Cinnamon Improves Glucose and Lipids of People With Type 2 Diabetes. Diabetes Care. 2003 ; 26 : 3215-8. https://doi.org/10.2337/diacare.26.12.3215
  13. Lee KH and Choi EM. Stimulatory effects of extract prepared from the Bark of Cinnamonum cassia Blume on the function of osteoblastic MC3T3-E1 cells. Phytotherapy Research. 2006 ; 20 : 952-60. https://doi.org/10.1002/ptr.1984
  14. Dvorak HF, Brown LF, Detmar M and Dvorak AM. Vascular permeability factor/ vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol. 2003 ; 146 : 1029-39.
  15. Ferrara N and Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997 ; 18 : 4-25.
  16. Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M and Heldin CH. Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem. 1994 ; 269 ; 26988-95.
  17. De Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N and Williams LT. The fms-like tyrosine kinase, a receptor for vascular endothelial cell growth factor. Science. 1992 ; 255 : 989-91. https://doi.org/10.1126/science.1312256
  18. Terman BI, Carrion ME, Kovacs E, Rasmussen BA, Eddy RL and Shows TB. Identification of a new endothelial cell growth factor receptor tyrosine kinase. Oncogene. 1991 ; 6 : 1677-83.
  19. Ferrara N, Gerber HP and LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003 ; 9 : 669-76. https://doi.org/10.1038/nm0603-669
  20. Park JE, Keller GA and Ferrara N. The vascular endothelial growth factor (VEGF) isoforms : differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Cell. 1993 ; 4 : 1317-26.
  21. Gitay-Goren H, Cohen T, Tessler S, Soker S, Gengrinovitch S, Rockwell P, Klagsbrun M, Levi BZ and Neufeld G. Selective binding of VEGF121 to one of the three vascular endothelial growth factor receptors of vascular endothelial cells. J Biol Chem. 1996 ; 271 : 5519-23. https://doi.org/10.1074/jbc.271.10.5519
  22. Neufeld G, Cohen T, Gitay-Goren H, Poltorak Z, Tessler S, Sharon R, Gengrinovitch S and Levi BZ. Similarities and differences between the vascular endothelial growth factor (VEGF) splice variants. Cancer Metastasis Rev. 1996 ; 15 : 153-8. https://doi.org/10.1007/BF00437467
  23. Robinson C and Stringer SE. The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sci. 2001 ; 114 : 853-64.
  24. Gitay-Goren H, Cohen T, Tessler S, Soker S, Gengrinovitch S, Rockwell P, Klagsbrun M, Levi BZ and Neufeld G. Selective binding of VEGF121 to one of the three vascular endothelial growth factor receptors of vascular endothelial cells. J Biol Chem. 2006 ; 271 : 5519-23. https://doi.org/10.1074/jbc.271.10.5519
  25. Neufeld G, Cohen T, Gitay-Goren H, Poltorak Z, Tessler S, Sharon R, Gengrinovitch S and Levi BZ. Similarities and differences between the vascular endothelial growth factor (VEGF) splice variants. Cancer Metastasis Rev. 1996 ; 15 : 153-8. https://doi.org/10.1007/BF00437467
  26. Soker S, Miao HQ, Nomi M, Takashima S and Klagsbrun M. VEGF165 mediates formation of complexes containing VEGFR-2 and neuropilin- 1 that enhance VEGF165-receptor binding. J Cell Biochem. 2002 ; 85 : 357-68. https://doi.org/10.1002/jcb.10140