High Efficiency Rectenna for Wireless Power Transmission Using Harmonic Suppressed Dual-mode Band-pass Filter

고조파 억압 이중모드 대역통과 여파기를 이용한 2.45 GHz 고효율 렉테나 설계

  • Published : 2009.12.31

Abstract

In this paper, a high efficiency 2.45 GHz rectenna with a microstrip patch antenna and a dual-mode band-pass filter in which the 2nd and 3rd harmonics are suppressed, is presented. From the experimental results, the 2.45GHz rectenna using 3rd harmonic suppressed dual-mode BPF shows the conversion efficiency of 41.6% with incident power density of 0.3 mW/cm2 and the received power of 1.66 mW. This result shows high conversion efficiency because the received power of this rectenna is lower than other rectennas to be compared with. This rectenna can be applied to the WPT (Wireless Power Transmission) field for energy harvesting. Also, it is expected to be used to provide the stand-by power for the low power devices for USN, and wireless power transfer in sensor application of MEMS devices.

본 논문에서는 마이크로스트립 패치 안테나와 2차 및 3차 고조파가 억압된 이중모드 대역통과 여파기를 이용하여 고효율의 2.45 GHz 렉테나를 설계 및 제작하였다. 입사전력밀도가 0.3 mW/cm2 일 때 1.66 mW 의 전력을 수신하였고, 41.6%의 RF-to-DC 변환효율의 실험 결과를 얻었다. 이는 입사 전력이 작기 때문에 다른 논문의 결과와 비교하여 고효율이라고 볼 수 있다. 또한 무선전력 전송을 통하여 다양한 응용기술 개발에 활용이 가능할 것으로 예측되며, USN(Ubiquitous Sensor Network)용 저전력 소자의 대기전원 공급 및 MEMS용 Sensor 등의 구동전압공급을 위한 무선 전력전송이 가능하게 될 것으로 기대된다.

Keywords

References

  1. W. C. Brown, "The history of power transmission by radio waves," IEEE Trans. Microwave Theory Tech., vol. 32, no. 9, pp. 1230-1242, Sept. 1984. https://doi.org/10.1109/TMTT.1984.1132833
  2. 박종철, 이영철, "마이크로파 Rrectenna의 설계와 DC 변환 효율 분석에 관한 연구," 대한전자공학회 논문지, 제5권, 제2호, pp. 88-93, Feb. 1996.
  3. C. A. Balanis, Antenna theory 3rd ed., John Wiley & Sons, Chap. 14, 2005.
  4. J. R. Lee, J. H. Cho, and S. W. Yun, "New compact bandpass filter using microstrip $\lambda/4$ resonators with open stub inverter," IEEE Microw. Guided Wave Lett., vol. 10, no. 12, pp. 526-527, Dec. 2000. https://doi.org/10.1109/75.895091
  5. L. Zhu and W. Menzel, "Compact microstrip bandpass filter with two transmission zeros using a stub-tapped half-wavelength line resonator," IEEE Microw. Wireless Comp. Lett., vol. 13, no. 1, pp. 16-18, Jan. 2003. https://doi.org/10.1109/LMWC.2002.807705
  6. W. H. Tu, "Compact double-mode cross-coupled microstrip bandpass filter with tunable transmission zeros," IEEE Microw. Antennas Propag., vol. 2, no. 4, pp. 373-377, 2008. https://doi.org/10.1049/iet-map:20070203
  7. T. W. Yoo and K. Chang, "Theoretical and experimental development of 10 and 35 GHz Rectennas," IEEE Trans. Microwave Theory Tech., vol. 40, no. 6, pp. 1259-1266, June. 1992. https://doi.org/10.1109/22.141359
  8. J. O. McSpadden, L. Fan, and K. Chang, "Design and experiments of a high conversion efficiency 5.8-GHz rectenna," IEEE Trans. Microwave Theory Tech., vol. 46, no. 12, pp. 2053-2060, Dec. 1998. https://doi.org/10.1109/22.739282
  9. Surface Mount RF Schottky Barrier Diodes HSMS-282x Series data sheet, Agilent Technologies.
  10. T. C. Yo, C. M. Lee, C. M. Hsu, and C. H. Luo, "Compact circulary polarized rectenna with unbalanced circular slots," IEEE Trans. Antennas Propagation, vol. 56, no. 3, pp. 882-886, Mar. 2008. https://doi.org/10.1109/TAP.2008.916956
  11. J. O. McSpadden and K. Chang, "A dual polarized circular patch rectifying antenna at 2.45 GHz for microwave power conversion and detection," IEEE MTT-S Int. Microwave Symp. Dig., pp. 1749-1752, June. 1994.
  12. Y. J. Ren, M. F. Farooqui, and K. Chang, "A compact dual-frequency rectifying antenna with high-orders harmonic-rejection," IEEE Trans. Antennas and Propagation, vol. 55, no. 7, pp. 2111-2113, July. 2007.