Solid-liquid 2phase flow in a concentric annulus with rotation of the inner cylinder

안쪽축이 회전하는 동심환형관내 고-액 2상 유동연구

  • Kim, Young-Ju (Korea Institute of Geoscience and Mineral Resources) ;
  • Han, Sang-Mok (School of Mechanical Engineering Sungkyunkwan Univ.) ;
  • Woo, Nam-Sub (School of Mechanical Engineering Sungkyunkwan Univ.) ;
  • Hwang, Young-Kyu (School of Mechanical Engineering Sungkyunkwan Univ.)
  • Published : 2009.06.30

Abstract

An experimental investigation is conducted to study a 2-phase vertically upward hydraulic transport of solid particles by water and non-Newtonian fluids in a slim hole concentric annulus with rotation of the inner cylinder. Rheology of particulate suspensions in viscoelastic fluids is of importance in many applications such as particle removal from surfaces, transport of proppants in fractured reservoir and cleaning of drilling holes, etc. In this study, a clear acrylic pipe was used in order to observe the movement of solid particles. Annular velocities varied from 0.3 m/s to 2.0 m/s. The mud systems included fresh water and CMC solutions. Main parameters considered in the study were inner-pipe rotation speed, fluid flow regime and particle injection rate. A particle rising velocity and pressure drop in annulus have been measured for fully developed flows of water and of aqueous solutions. For both water and 0.2% CMC solutions, the higher the concentration of the solid particles is, the larger the pressure gradients become.

본 논문은 안쪽축이 회전하는 동심환형관 물과 비뉴튼유체의 고-액 2상 유동연구를 수행하였다. 점탄성유체의 유변학은 굴착구멍의 청결, 입자의 밖으로 수송하는 등 여러 가지 응용에 중요하다. 연구에서 투명한 아크릴관은 고체입자의 이동을 관찰하기 위하여 사용하였다. 환형관 속도는 0.3m/s에서 2.0m/s로 변한다. 머드시스템은 물과 CMC 수용액을 혼합하여 사용하였다. 연구에서 고려된 주요 변수들은 축회전속도, 유체 유동영역과 입자 주입율이다. 입자이송속도와 압력강하는 유체유량(Q, LPM)이 5~30의 범위에서 측정하였다. 물과 0.2% CMC 수용액에서 고체입자의 농도가 높을수록 압력손실이 커짐을 알 수 있었다.

Keywords

References

  1. Becker, H. A.: "The effects of Shape and Reynolds Number on Drag in the Motion of a Freely Oriented Body in an Infinite Fluid", Can. J. Chem. Eng., pp.85-91, (1959)
  2. Hottovy, J. D. and Sylvester, N. D.: "Drag Coefficients of Irregularly Shaped Particles", I&EC Process Design and Development, Vol.18, pp.443, (1997)
  3. Lauzon, R. V. and Reid, K. I. B.: "New Rheological Model Offers Field Alternatives", Oil and Gas Journal, Vol.77, pp.51-57, (1979)
  4. Kim, Y. J. and Hwang, Y. K.: "Experimental study on the vortex flow in a concentric annulus with a rotating inner cylinder", International Journal of KSME, Vol.17, No.4, pp.562-570, (2003) https://doi.org/10.1007/BF02984457
  5. Tao, L. N. and Donovan, W. F.: "Through Flow in Concentric and Eccentric Annuli of Fine Clearance With and Without Relative Motion of the Boundaries", Trans. ASME, pp.1291-1301, (1955)
  6. Escudier, M. P., Oliveira, P. J. and Pinho, F. T.: "Fully developed laminar flow of purely viscous non-Newtonian liquids through annuli, including the effects of eccentricity and inner-cylinder rotation", I. J. Heat and Fluid Flow, Vol.23, pp.52-73, (2002) https://doi.org/10.1016/S0142-727X(01)00135-7