Prediction of Stream Flow on Probability Distributed Model using Multi-objective Function

다목적함수를 이용한 PDM 모형의 유량 분석

  • 안상억 (충북대학교 대학원 토목공학과) ;
  • 이효상 (충북대학교 공과대학 토목공학부) ;
  • 전민우 (충북대학교 공과대학 토목공학부)
  • Published : 2009.10.31

Abstract

A prediction of streamflow based on multi-objective function is presented to check the performance of Probability Distributed Model(PDM) in Miho stream basin, Chungcheongbuk-do, Korea. PDM is a lumped conceptual rainfall runoff model which has been widely used for flood prevention activities in UK Environmental Agency. The Monte Carlo Analysis Toolkit(MCAT) is a numerical analysis tools based on population sampling, which allows evaluation of performance, identifiability, regional sensitivity and etc. PDM is calibrated for five model parameters by using MCAT. The results show that the performance of model parameters(cmax and k(q)) indicates high identifiability and the others obtain equifinality. In addition, the multi-objective function is applied to PDM for seeking suitable model parameters. The solution of the multi-objective function consists of the Pareto solution accounting to various trade-offs between the different objective functions considering properties of hydrograph. The result indicated the performance of model and simulated hydrograph are acceptable in terms on Nash Sutcliffe Effciency*(=0.035), FSB(=0.161), and FDBH(=0.809) to calibration periods, validation periods as well.

본 연구는 미호천 유역을 대상으로 유량곡선의 세부적인 특성을 고려한 다목적함수를 적용하여 Probability Distribution Model(PDM) 모형의 유량모의성능을 검토하였다. PDM은 유역을 한 개의 단위구역으로 개념화한 집중형 강우유출모형으로 영국의 지역화 연구 및 홍수량 산정방법에 대표적으로 이용되고 있다. PDM 모형의 5개 매개변수를 Monte Carlo 방법에 기반을 둔 분석도구(MCAT, Monte Carlo Analysis Toolkit)를 활용하여 사후검정분포, 검정근거 및 민감도 분석 등을 수행하였으며, 모형의 매개변수 중 cmax와 k(q)만이 뚜렷한 검정 근거가 있고 나머지 변수들은 동등성의 영향을 확인하였다. 또한, 유량곡선의 고유량 및 저유량의 특성을 맞춘 목적함수의 Trade-off를 고려한 매개변수의 파레토 최적해를 산정한 결과, 모든 목적에 최대한 부합하는 유량 산정의 가능성을 제시하였다. 검정(calibration)기간에서 NS*E=0.035, FSB=0.161, FDBH= 0.809로 안정적이며 만족할만한 모의성능을 나타내었고, 검증(validation)기간에 대해서도 안정적인 모의성능을 나타내었다.

Keywords

References

  1. 구보영, 김태순, 정일권, 배덕효 (2007) 다목적 유전자알고리즘을 이용한 Tank 모형 매개변수 최적화(II): 선호적 순서화의 적용. 한국수자원학회논문집, 한국수자원학회, Vol. 40, No. 9, pp. 687-696 https://doi.org/10.3741/JKWRA.2007.40.9.687
  2. 김승권 (2006a) 수자원 공학에서의 최적화 기법의 활용 (I). 한국수자원학회지, 한국수자원학회, Vol. 39, No. 7, pp. 81-87
  3. 김승권 (2006b) 수자원 공학에서의 최적화 기법의 활용 (II). 한국수자원학회지, 한국수자원학회, Vol. 39, No. 8, pp. 108-117
  4. 김승권 (2006c) 수자원 공학에서의 최적화 기법의 활용 (III). 한국수자원학회지, 한국수자원학회, Vol. 39, No. 9, pp. 83-94
  5. 김태순, 정일권, 구보영, 배덕효 (2007) 다목적 유전자알고리즘을 이용한 Tank 모형 매개변수 최적화(I): 방법론과 모형구축. 한국수자원학회논문집, 한국수자원학회, Vol. 40, No. 9, pp. 677-685 https://doi.org/10.3741/JKWRA.2007.40.9.677
  6. 성윤경, 김상현, 김현준, 김남원 (2004) 다양한 목적 함수와 최적화 방법을 달리한 SIMHYD와 TANK 모형의 적용성 연구. 한국수자원학회논문집, 한국수자원학회, Vol. 37, No. 2, pp. 121-131 https://doi.org/10.3741/JKWRA.2004.37.2.121
  7. 이길성, 김상욱, 홍일표 (2005) 다중목적함수를 이용한 강우-유출 모형의 자동보정. 한국수자원학회논문집, 한국수자원학회, Vol. 38, No. 10, pp. 861-869 https://doi.org/10.3741/JKWRA.2005.38.10.861
  8. 정일원, 배덕효, 오윤근, 이환기 (2004) 장기유출모형의 모의능력에 관한 연구. 한국수자원학회 2004년도 학술발표회 논문집, 한국수자원학회, pp. 1037-1041
  9. Abbott, M.B., Bathurst, J.C., Cunhem, J.A., O'Connel, P.E., and Rasmussen, J. (1986) An Introduction to European Hydrological System-Systeme Hydrologique Europeen, (SHE): History and Philosophy of a Phisically-Based Distributed Modeling System. Journal of Hydrology, Vol. 87, pp. 45-59 https://doi.org/10.1016/0022-1694(86)90114-9
  10. Beven, K. (2001) Rainfall-Runoff Modelling The Primer. John Wiley & Sons Ltd, Chichester, England
  11. Beven, K and Kirkby, M. (1976) A physically based variable contributing area model of basin. Hydrological Sciences Bulletin, Vol. 24(1), pp. 43-69 https://doi.org/10.1080/02626667909491834
  12. Boyle D., Gupta H., Sorooshian S., Koren V., Zhang Z. and Smith M. (2001) Towards improved streamflow forecasts: The value of semi-distributed modelling. Water Resources Research, Vol. 37(11), pp. 2739-2759 https://doi.org/10.1029/2000WR000207
  13. CEH. (2005) The Revitalised FSR/FEH Rainfall-Runoff Method. Centre for Ecology & Hydrology, Wallingford
  14. Gupta H.V., Sorooshian S., and Yapo P.O. (1998) Toward improved calibration of hydologic models: Multiple and noncommensurable measures of information. Water Resource Research, Vol. 34, No. 4, pp. 751-763 https://doi.org/10.1029/97WR03495
  15. Jakeman, A., Hornberger, G. (1993) How Much Complexity is warranted in a Rainfall-runoff model? Water Resources Research, Vol. 29(8), pp. 2637-2649 https://doi.org/10.1029/93WR00877
  16. Jakeman, A., Littlewood, I., and Whitehead, P. (1990) Computation of the instantaneous unit hydrograph and identifiable component flows with application to two small upland catchments. Journal of Hydrology, Vol. 117, pp. 275-300 https://doi.org/10.1016/0022-1694(90)90097-H
  17. Madsen Henrink (2000) Automatic calibration of a conceptual rainfall-runoff model using multiple objectives. Journal og hydrology, Vol. 235, pp. 276-288 https://doi.org/10.1016/S0022-1694(00)00279-1
  18. Madsen Henrink (2003) Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives. Advances in Water Resources, Vol. 26, pp. 205-216 https://doi.org/10.1016/S0309-1708(02)00092-1
  19. Moore, R. (1985) The probability-distributed principle and runoff prediction at point and basin scales. Hydrological Sciences Bulletin, Vol. 30(2), pp. 273-297 https://doi.org/10.1080/02626668509490989
  20. Nash, J. and Sutcliffe, J. (1970) River flow forecasting through conceptual models part I -A discussion of principles. Journal of Hydrology, Vol. 10, pp. 282-290 https://doi.org/10.1016/0022-1694(70)90255-6
  21. Raid, S., Marina, J., Bouchaou, L., and Najjar, Y. (2004) Rainfallrunoff model using an artificial Neural Network Approach. Mathematical and Coputer Modelling, Vol. 40, No. 7-8, pp. 839-846 https://doi.org/10.1016/j.mcm.2004.10.012
  22. Sugawara, M., Watanabe, I., Ozaki, E., Katsuyama, Y. (1984) Tank Model with Snow Component. National Reasearch Center for Disaster Prevention, Tchuchuba, Japan
  23. Vieux, B.E. (2001) Distributed Hydrologic Modeling Using GIS. Kluwer Academic Publishers, Nowell. Massachusetts, Water Science Technology Series, Vol. 38
  24. Wagener, T. and Kallat, J. (2007) Numerical and visual evaluation of hydrological and environmental models using the Monte Carlo analysis toolbox. Environmental Modelling & Software, Vol. 22, No. 7, pp. 1021-1033 https://doi.org/10.1016/j.envsoft.2006.06.017
  25. Wagener, T. and Lees, M. (2001a) Rainfall-Runoff Modelling Toolbox user manual. Civil and Environmental Engineering Department, Imperial College London, London
  26. Wagener, T. and Lees, M. (2001b) Monte Carlo Analysis Toolbox user manual. Civil and Environmental Engineering Department, Imperial College London, London
  27. Wagner, T., Wheater, H. and Gupta, H. (2004) Rainfall-Runoff modeling in gaged and ungaged catchments. Imperial College Press, London, UK
  28. Young, P. (1999) Data-based mechanistic modelling, generalised sensitivity and dominant mode analysis. Computer Physics Communications, Vol. 117, No. 1-2, pp. 113-129 https://doi.org/10.1016/S0010-4655(98)00168-4