Analysis of genetic diversity and population structure of rice cultivars from Africa, Asia, Europe, South America, and Oceania using SSR markers

  • Cheng, Yi (Department of Plant Resources, College of Industrial Science, Kongju National University) ;
  • Cho, Young-Il (Department of Plant Resources, College of Industrial Science, Kongju National University) ;
  • Chung, Jong-Wook (Department of Plant Resources, College of Industrial Science, Kongju National University) ;
  • Ma, Kyung-Ho (National Agrobiodiversity Center, National Institute of Agricultural Biotechnology, RDA) ;
  • Park, Yong-Jin (Department of Plant Resources, College of Industrial Science, Kongju National University)
  • Published : 2009.12.31

Abstract

In this study, 29 simple sequence repeat (SSR) markers were used to analyze the genetic diversity and population structure of 125 rice accessions from 40 different origins in Africa, Asia, Europe, South America, and Oceania. A total of 333 alleles were detected, with an average of 11.5 per locus. The mean values of major allele frequency, expected heterozygosity, and polymorphism information content (PIC) for each SSR locus were 0.39, 0.73, and 0.70, respectively. The highest mean PIC was 0.71 for Asia, followed by 0.66 for Africa, 0.59 for South America, 0.53 for Europe, and 0.47 for Oceania. Model-based structure analysis revealed the presence of five subpopulations, which was basically consistent with clustering based on genetic distance. Some accessions were clearly assigned to a single population in which >70% of their inferred ancestry was derived from one of the model-based populations. In addition, 12 accessions (9.6%) were categorized as having admixed ancestry. The results could be used to understanding the genetic structure of rice cultivars from these regions and to support effective breeding programs to broaden the genetic basis of rice varieties.

Keywords

References

  1. Akkaya, M. S., Bhagwat, A. A. and Cregan, P. B. 1992. Length polymorphisms of simple sequence repeat DNA in soybean. Genetics 132 : 1131-1139
  2. Cho, Y. G., Ishii, T., Temnykh, S., Chen, X., Lipovich, L., McCouch, S. R., Park, W. D., Ayres, N. and Cartinhour, S. 2000. Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.). Theor. Appl. Genet. 100 : 713-722 https://doi.org/10.1007/s001220051343
  3. Crawford, G. W. and Chen, S. 1998. The origins of rice agriculture: recent progress in East Asia. Antiquity 72 : 858-866
  4. Evanno, G., Regnaut, S. and Goudet, J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE : a simulation study. Mol.Ecol. 14 : 2611-2620 https://doi.org/10.1111/j.1365-294X.2005.02553.x
  5. Garris, A. J., Tai, T. H., Coburn, J., Kresovich, S. and McCouch, S. 2005. Genetic Structure and Diversity in Oryza sativa L. Genetics 169 : 1631-1638 https://doi.org/10.1534/genetics.104.035642
  6. Glaszmann, J. C. 1987. Isozymes and classification of asian rice varieties. Theor. Appl. Genet. 74 : 21-30 https://doi.org/10.1007/BF00290078
  7. Ishii, T. and McCouch, S. R. 2000. Microsatellites and microsyntenyin the chloroplast genomes of Oryza and eight other Gramineaes pecies. Theor. Appl. Genet. 100 : 1257-1266 https://doi.org/10.1007/s001220051432
  8. Ishii, T., Xu, Y. and McCouch, S. R. 2001. Nuclear- and chloroplast microsatellite variation in A-genome species of rice. Genome 44 : 658-666 https://doi.org/10.1139/gen-44-4-658
  9. Kuroda, Y., Urairong, H. and Sato, Y. I. 2003. Population genetic structure of wild rice (Oryza rufipogon) in mainland Southeast Asia as revealed by microsatellite polymorphisms. Tropics 12 : 159-170 https://doi.org/10.3759/tropics.12.159
  10. Kwon, S. J., Lee, G. A., Lee, S. Y., Park, Y. J., Gwag, J. G., Kim, T. S., Ma and K. H. 2009. Isolation and characterization of 21 microsatellite loci in Lycium chinense and cross-amplification in Lycium barbarum. Conservation Genetics (DOI 10.1007/s10592-008-9792-x)
  11. Lee, J. R., Hong, G. Y., Dixit, A., Chung, J. W., Ma, K. H., Lee, J. H., Kang, H. K., Cho, Y. H., Gwag, J. G. and Park, Y. J. 2008. Characterization of microsatellite loci developed for Amaranthus hypochondriacus and their cross-amplifications in wild species. Conservation Genetics 9 : 243-246 https://doi.org/10.1007/s10592-007-9323-1
  12. Liu, K. and Muse, S. V. 2005. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21 : 2128-2129 https://doi.org/10.1093/bioinformatics/bti282
  13. Ma, J. and Bennetzen, J. L. 2004. Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci USA 101 : 12404-12410 https://doi.org/10.1073/pnas.0403715101
  14. Ma, K. H., Kwag, J. G., Zhao, W. G., Dixit, A., Lee, G. A., Kim, H. H., Chung, I. M., Kim, N. S., Lee, J. S., Ji, J. J., Kim, T. S. and Park, Y. J. 2009. Isolation and Characteristics of eight novel polymorphic microsatellite loci from the genome of garlic (Allium sativum L.). Scientia Horticulturae 122 : 355-361 https://doi.org/10.1016/j.scienta.2009.06.010
  15. Maccaferri, M., Sanguineti, M. C., Noli, E. and Tuberosa, R. 2005. Population structure and long-range linkage disequilibrium in a durum wheat elite collection. Molecular Breeding 15 : 271-289 https://doi.org/10.1007/s11032-004-7012-z
  16. Mather, K. A., Caicedo, A. L., Polato, N. R., Olsen, K. M., McCouch, S. and Purugganan, M. D. 2007. The extent of linkage disequilibrium in rice (Oryza sativa L.). Genetics 177 : 2223-2232 https://doi.org/10.1534/genetics.107.079616
  17. McCouch, S. R., Chen, X., Panaud, O., Temnykh, S., Xu, Y., Cho, Y. G., Huang, N., Ishii, T. and Blair, M. W. 1997. Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol. Biol. 35 : 89-99 https://doi.org/10.1023/A:1005711431474
  18. McCouch, S. R., Temnykh, S., Lukashova, A., Coburn, J., DeClerck, G., Cartinhour, S., Harrington, S., Thomson, M., Septiningsih, E., Semon, M., Moncada, P. and Li, J. 2001. Microsatellite markers in rice: abundance, diversity, and applications. In: Khush GS, Brar DS, Hardy B (eds) Rice genetics IV. Science PublishersInc. International Rice Research Institute Los Ban~ os, Philippines, pp. 117-135
  19. Nakano, M., Yoshimura, A. and Iwata, N. 1992. Phylogenetic study of cultivated rice and its wild relatives by RFLP. Rice Genet. Newsletters 9 : 132-134
  20. Ni, J., Colowit, P. M. and Mackill, D. J. 2002. Evaluation of genetic diversity in rice subspecies using microsatellite markers. Crop Sci. 42 : 601-607 https://doi.org/10.2135/cropsci2002.0601
  21. Normile, D. 1997. Archaeology: Yangtze seen as earliest rice site. Science 275 : 309 https://doi.org/10.1126/science.275.5298.309
  22. Ostrowski, M. F., David, A., Santoni, S., Mckhann, H., Reboud, X., Corre, V. L., Camilleri, C., Brunel, D., Bouchez, D., Faure, B. and Bataillon, T. 2006 Evidence for a large-scale population structure among accessions of Arabidopsis thaliana:possible causes and consequences for the distribution of linkage disequilibrium. Mol. Ecol. 15 : 1507-1517 https://doi.org/10.1111/j.1365-294X.2006.02865.x
  23. Park, Y. J., Dixit, A., Ma, K. H., Lee, J. K., Lee, M. H., Chung, C. S., Nitta, M., Okuno, K., Kim, T. S., Cho, E. G. and Rao, V. R. 2008. Evaluation of genetic diversity and relationships within an on- farm collection of Perilla frutescens Britt .using microsatellite markers. Genetic Resources & Crop Evolution 55(4) : 523-535 https://doi.org/10.1007/s10722-007-9258-x
  24. Park, Y. J., Lee, J. K. and Kim, N. S. 2009. Simple Sequence Repeat Polymorphisms (SSRPs) for Evaluation of Molecular Diversity and Germplasm Classification of Minor Crops. Molecules 14 : 4546-4569 https://doi.org/10.3390/molecules14114546
  25. Parsons, B. J., Newbury, H. J., Jackson, M. T. and Ford-Lloyd, B. V. 1999. The genetic structure and conservation of aus, aman and boro rices from Bangladesh. Genet. Res. Crop Evol. 46 : 587-598 https://doi.org/10.1023/A:1008749532171
  26. Porteres, R. 1970. Primary cradles of agriculture in the African continent, African Prehistory, edited by J. Fage and R. Olivier. Cambridge University Press, Cambridge, UK. pp. 43-58
  27. Pritchard, J. K. and Rosenberg, N. A. 1999. Use of unlinked genetic markers to detect population stratification in association studies. Am. J. Hum. Genet. 65 : 220-228 https://doi.org/10.1086/302449
  28. Pritchard, J. K., Stephens, M. and Donnelly, P. 2000. Inference of population structure using multilocus genotype data. Genetics 155 : 945-959 https://doi.org/10.1111/j.1471-8286.2007.01758.x
  29. Pritchard, J. K. and P. Donnelly. 2001. Case-control studies of associationin structured or admixed populations. Theor. Popul. Biol. 60 : 227-237 https://doi.org/10.1006/tpbi.2001.1543
  30. Pritchard, J. K. and M. Przeworski. 2001. Linkage disequilibrium in human genetics: Model and data. Am. J. Hum. Genet. 69 : 1-14 https://doi.org/10.1086/321275
  31. Remington, D. L., Thornsberry, J. M., Matsuoka, Y., Wilson, L. M., Whitt, S. R., Doebley, J., Kresovich, S., Goodman, M. M. and Buckler, E. S. IV. 2001. Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc. Natl. Acad. Sci. USA 98 : 11479-11484 https://doi.org/10.1073/pnas.201394398
  32. Rosenberg, N. A., Pritchard, J. K., Weber, J.L., Cann, H. M., Kidd, K. K., Zhivotovsky, L. A. and Feldman, M. W. 2002. Genetic structure of human populations. Science 298 : 2381-2385 https://doi.org/10.1126/science.1078311
  33. Sano, R. and Morishima, H. 1992. Indica-japonica differentiation of rice cultivars viewed from variations in key characters and isozymes with special reference to landraces from the Himalayan hilly areas. Theor. Appl. Genet. 84 : 266-274
  34. Second, G. 1982. Origin of the genic diversity of cultivated rice (Oryza spp.): study of the polymorphism scored at 40 isozyme loci. Jpn. J. Genet. 57 : 25-57 https://doi.org/10.1266/jjg.57.25
  35. Second, G. 1986. Isozymes and phylogenetic relationship in Oryza. Proceedings of the International Rice Genetics Symposium, May 27–31, 1985. International Rice Research Insti tute, Manila. pp. 27-39
  36. Tamura, K., Dudley, J., Nei, M. and Kumar, S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Molecular Biology and Evolution 24 : 1596-1599 https://doi.org/10.1093/molbev/msm092
  37. Tang, J. B., Xia, H. A., Cao, M. L., Zhang, X. Q., Zeng, W. Y., Hu, S. N., Tong, W., Wang, J., Yu, J., Yang, H. M. and Zhu, L. H. 2004. A comparison of rice chloroplast genomes. Plant Phys 135 : 412-420 https://doi.org/10.1104/pp.103.031245
  38. Thornsberry, J. M., Goodman, M. M., Doebley, J., Kresovich, S., Nielson, D. and Buckler, E. S. IV. 2001. Dwarf8 polymorphisms associ ate with variation in flowering time. Nat. Genet. 28 : 286-289 https://doi.org/10.1038/90135
  39. Viguier, P. 1939. La Riziculture Indige ne au Soudan Fran$\c{c} $ais. Larose, nome-wide coverage in rice (Oryza sativa L.). Theor. Appl. Genet. Paris. 95 : 553-567
  40. Vitte, C., Ishii, T., Lamy, F., Brar, D. S. and Panaud, O. 2004. Genomic paleontology provides evidence for two distinct origins of Asian rice (Oryza sativa L.). Mol Genet Genomics 272 : 504-511 https://doi.org/10.1007/s00438-004-1069-6
  41. Wang, Z., Second, G. and Tanksley, S. 1992. Polymorphism and phylogenetic relationship among species in the genus Oryza as determined by analysis of nuclear RFLPs. Theor. Appl. Genet. 83 : 565-581 https://doi.org/10.1007/BF00226900
  42. Wang, Z. Y. and Tanksley, S. D. 1989. Restriction fragment length polymorphism in Oryza sativa L.. Genome 32 : 1113-1118 https://doi.org/10.1139/g89-563
  43. Yang, G. P., Maroof, M. A. S., Xu, C. G., Zhang, Q. and Biyashev, R. M. 1994. Comparative analysis of microsatellite DNA polymorphism in landraces and cultivars of rice. Mol. Gen. Genet. 245 : 187-194 https://doi.org/10.1007/BF00283266
  44. Zhu, Q. and Ge, S. 2005. Phylogenetic relationships among A-genome species of the genus Oryza revealed by intron sequences of four nuclear genes. New Phytol 167 : 249-265 https://doi.org/10.1111/j.1469-8137.2005.01406.x
  45. Zhang, Q. F., Maroof, M. A. S., Lu, T. Y. and Shen, B. Z. 1992. Genetic diversity and differentiation of indica and japonica rice detected by RFLP analysis. Theor. Appl. Genet. 83 :495-499 https://doi.org/10.1007/BF00226539
  46. Zhao, W. G., Chung, J. W., Ma, K. H., Kim, T. S., Kim, S. M., Shin, D. I., Kim, C. H., Koo, H. M. and Park, Y. J. 2009b. Analysis of genetic diversity and population structure of rice cultivars from Korea, China and Japan using SSR markers. Gene & Genomics. 31 : 283-292 https://doi.org/10.1007/BF03191201
  47. Zhao, W. G., Park, E. J., Chung, J. W., Park, Y. J., Chung, I. M., Ahn, J. K. and Kim, G. H. 2009a. Association Analysis of the Amino Acid Contents in Rice. Journal of Integrative Plant Biology 51 (12) : 1126-1137 https://doi.org/10.1111/j.1744-7909.2009.00883.x