Morphological Traits of S598A Sweetpotato as an Industrial Starch Crop

  • Kim, Kyung-Moon (BioControl Center, Jeonnam Bioindustry Foundation) ;
  • Kim, Ji-Yeon (Division of Plant Biotechnology, Chonnam National University) ;
  • Kim, Jung-Il (Department of Genetic Engineering, Chonnam National University)
  • 발행 : 2009.12.31

초록

Sweetpotato is one of the important starch crops, current more considered as an industrial crop rather than food because it has higher starch content (over 80% of biomass), it is used for bio resources for industrial area. In this study, we generated S598A (a mutant gene of oat phytochrome A) sweetpotato plant using Agrobacterium-transformation method. Morphological characteristics of S598A plant were compared with the wild type sweetpotato, S598A had darker green leaves, increased chlorophyll content higher than to two-fold, delayed leaf senescence, shorter plant height (60% shorter than that of the wild type), more number of leaves and petioles about 1.8-fold, shorter petiole length (30% shorter), 1.2-fold more branches and 1.6-fold thicker stem diameters. From this study, S598A plants with such phenotypic characteristics might be able to use the solar energy efficiently, to have increased tolerance to biotic and abiotic stresses and finally to increase productivity (not only starch yield but also root biomass yield). S598A sweetpotato lines are under field trials.

키워드

참고문헌

  1. Cheng, M., J. E. Fry, S. Pang, H. Zhou, C. M. Hironaka, D. R. Duncan, T. W. Conner, and Y. Wan. 1997. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol. 115 : 971-980
  2. Dekeyser, R., B. Claes, M. Marichal, M. van Montagu, and A. Caplan. 1989. Evaluation of selectable markers for rice transformation. Plant Physiol. 20 : 217-233
  3. Dellaporta, S. L., J. Wood, and J. B. Hicks. 1983. A plant DNA minipreparation: Version II. Plant Biol. Rep. 1 : 19-21 https://doi.org/10.1007/BF02712670
  4. Howe, A., S. Sato, I. Dweikat, M. Fromm, and T. Clemente. 2006. Rapid and reproducible Agrobacterium-transformation of sorghum. Plant Cell Rep. 25 : 784-791. http://www.knrda.go.kr/ares/market/m106.htm http://www.uncapsa.org/Flash/flash0803.pdf https://doi.org/10.1007/s00299-005-0081-6
  5. Kim, J. I., Y. Shen, Y. J. Han, J. E. Park, D. Kirchenbauer, M. S. Soh, F. Nagy, E. Schafer, and P-S. Song. 2004. Phytochrome phosphorylation modulates light signaling by influencing the protein-protein interaction. Plant Cell 16 : 2629–2640 https://doi.org/10.1105/tpc.104.023879
  6. Okada, Y., A. Saito, M. Nishiguchi, T, Kimaru, M. Mori, K. Hanada, J. Sakai, C. Miyazaki, Y. Matsude, and T. Mrada. 2001. Virus resistance in transgenic sweetpotato [Ipomoea batatas (L.) Lam] expressing the coat protein gene of sweetpotato feathery mottle virus. Theor. Appl. Genet. 103 : 743-751 https://doi.org/10.1007/s001220100654
  7. Sharrock, R.A. and P. H. Quail. 1989. Novel phytochrome sequences in Arabidopsis thaliana: Structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Dev. 3 : 1745–1757 https://doi.org/10.1101/gad.3.11.1745
  8. Shin, Y-M., G. Choe, B. Shin, G. Yi, P-Y. Yun, K. Yang, J. S. Lee, S-S. Kwak, and K-M. Kim. 2007. Selection of npt II transgenic sweetpotato plants using G418 and paromomycin. J. Plant Biol. 50 : 206-212 https://doi.org/10.1007/BF03030631
  9. Smith, H. and G. C. Whitelam. 1997. The shade avoidance syndrome: multiple responses mediated by multiple phytochromes. Plant Cell Environ. 20 : 840-844 https://doi.org/10.1046/j.1365-3040.1997.d01-104.x
  10. Thiele, A., M. Herold, I. Lenk, I., P. H. Quail, and C. Gatz. 1999. Heterologous expression of Arabidopsis phytochrome B in transgenic potato influences photosynthetic performance and tuber development. Plant Physiol. 120 : 73-82 https://doi.org/10.1104/pp.120.1.73
  11. Tingay, S., D. McElroy, R. Kalla, S. Fieg, M. Wang, S. Thornton, and R. Brettell. 2002. Agrobacterium tumefaciensmediated barley transformation. Plant J. 11 : 1369-1376 https://doi.org/10.1046/j.1365-313X.1997.11061369.x
  12. Wakita, Y., M. Otani, T. Harada, M. Mori, K. Iba, and T. Shimada. 2001. A tobacco microsomal ω-3-fatty acid desaturase gene increases in linolenic acid content in transgenic sweetpotato (Ipomoea batatas). Plant Cell Rep. 20 : 244-249 https://doi.org/10.1007/s002990100316
  13. Woolfe. J.A. 1992. Sweetpotato, An untapped food resource, Cambridge University Press, New York
  14. Yi, G., Y-M. Shin, G. Choe, B. Shin, Y. S. Kim, and K-M. Kim. 2007. Production of herbicide-resistant sweet potato plants transformed with the bar gene. Biotechnol. Lett. 29 : 669-675 https://doi.org/10.1007/s10529-006-9278-1