DOI QR코드

DOI QR Code

Bioinformatics Analysis of Hsp20 Sequences in Proteobacteria

  • Heine, Michelle (Department of Biological, Chemical and Physical Sciences, Roosevelt University) ;
  • Chandra, Sathees B.C. (Department of Biological, Chemical and Physical Sciences, Roosevelt University)
  • Published : 2009.03.31

Abstract

Heat shock proteins are a class of molecular chaperones that can be found in nearly all organisms from Bacteria, Archaea and Eukarya domains. Heat shock proteins experience increased transcription during periods of heat induced osmotic stress and are involved in protein disaggregation and refolding as part of a cell's danger signaling cascade. Heat shock protein, Hsp20 is a small molecular chaperone that is approximately 20kDa in weight and is hypothesized to prevent aggregation and denaturation. Hsp20 can be found in several strains of Proteobacteria, which comprises the largest phyla of the Bacteria domain and also contains several medically significant bacterial strains. Genomic analyses were performed to determine a common evolutionary pattern among Hsp20 sequences in Proteobacteria. It was found that Hsp20 shared a common ancestor within and among the five subclasses of Proteobacteria. This is readily apparent from the amount of sequence similarities within and between Hsp20 protein sequences as well as phylogenetic analysis of sequences from proteobacterial and non-proteobacterial species.

Keywords

References

  1. Chandra, S., Vlk, J., and Kapatral, V. (2006). Comparative insect mitochondrial genomes: Differences despite conserved genome synteny. African Journal of Biotechnology 5, 1308-1318
  2. Davies, E.L., Baclear, M.M.F.V.G., Marshall, M.J., Andrew, S.M., and Williams, J.H.H. (2006). Heat shock proteins form part of a danger signal cascade in response to lipopolysaccharide and GroEL. Clinical and Experimental Immunology 145, 183-189 https://doi.org/10.1111/j.1365-2249.2006.03109.x
  3. Dedysh, S., Ricke, P., and Liesack, W. (2004), NifH and NifD phylogenies: an evolutionary basis for understanding nitrogen fixation capabilities of methanotrophic bacteria, Microbiology 150, 1301-1313 https://doi.org/10.1099/mic.0.26585-0
  4. Kim, K.K., Kim, R., and Kim, S.H. (1998). Crystal structure of a small heat-shock protein. Nature 394, 595-599 https://doi.org/10.1038/29106
  5. Landes, C., Henaut, A., and Risler, J. (1992). Dot-plot comparison by multivariate analysis (DOCMA): a tool for classifying protein sequences. Bioinformatics 9, 191-196 https://doi.org/10.1093/bioinformatics/9.2.191
  6. Lee, K., Liu, C., Anzai, Y., Kim, H., Aono, T., and Oyaizu, H. (2005). The hierarchical system of the 'Alphaproteobacteria'; Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. International Journal of Systematic and Evolutionary Microbiology 55, 1907-1919 https://doi.org/10.1099/ijs.0.63663-0
  7. Ludwig, W., and Klenk, H.P. (2001). Overview: a phylogenetic backbone and taxonomic framework for prokaryotic systematics. In Bergey’s Manual of Systematic Bacteriology. Garrity, G.M. (ed.). New York, USA: Springer, pp.49-66
  8. Meeks, M., Ripley, M., Jin, Z., and Rembold, C. (2005). Heat shock protein 20-mediated force suppression in forskolin- relaxed swine carotid artery. American Journal of Physiological - Cell Physiology 288, C633-C639 https://doi.org/10.1152/ajpcell.00269.2004
  9. Miroschnichenko, M., L'Haridon, S., Schumann, P., Spring, S., Bonch-Osmolovskaya, E., Jeanthon, C., and Stackebrandt, E. (2004). Caminibacter profundus sp. Nov., a novel thermophile of Nautiliales ord. nov. within the class 'Epsilonproteobacteria', isolated from a deep-sea hydrothermal vent. Internation Journal of Systematic and Evolutionary Microbiology 54, 41-45 https://doi.org/10.1099/ijs.0.02753-0
  10. Mulder, N.J., Apweiler, R., Attwood, T.K., Bairoch, A., Bateman, A., Binns, D., Bork, P., Buillard, V., Cerutti, L., Copley, R., Courcelle, E., Das, U., Daugherty, L., Dibley, M., Finn, R., Fleischmann, W., Gough, J., Haft, D., Hulo, N., Hunter, S., Kahn, D., Kanapin, A., Kejariwal, A., Labarga, A., Langendijk-Genevaux, P.S., Lonsdale, D., Lopez, R., Letunic, I., Madera, M., Maslen, J., McAnulla, C., McDowall, J., Mistry, J., Mitchell, A., Nikolskaya, A.N., Orchard, S., Orengo, C., Petryszak, R., Selengut, J.D., Sigrist, C.J., Thomas, P.D., Valentin, F., Wilson, D., Wu, C.H., and Yeats, C. (2007). New developments in the InterPro database. Nucleic Acids Res. 35, D224-D228 https://doi.org/10.1093/nar/gkl841
  11. Oganesyan, N., Ankoudinova, I., Kim, S., and Kim, R. (2007). Effect of osmotic stress and recombinant protein overexpression and crystallization. Protein Expression Purification 52, 280-285 https://doi.org/10.1016/j.pep.2006.09.015
  12. Page, R. (1996). TREEVIEW: An application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12, 357-358
  13. Rembold, C., Foster, D., Strauss, J., Wingard, C., and Van Eyk, J. (2000). cGMP-mediated phosphorylation of heat shock protein 20 mau cause smooth muscle relaxation without myosin light chain dephosphorylation in swine carotid artery. The Journal of Physiology 524, 865-878 https://doi.org/10.1111/j.1469-7793.2000.00865.x
  14. Rice, P., and Longden, I. (2000). Emboss: the European Molecular Open Software Suite. Trends in Genetics 16, 276-277 https://doi.org/10.1016/S0168-9525(00)02024-2
  15. Schlesinger, M. (1990). Minireview: Heat Shock Proteins. The Journal of Biological Chemistry 265, 12111-12114
  16. Suzuki, A., Sugiyama, Y., Hayashi, Y., Nyu-I, N., Yoshida, M., Nonaka, I., Ishiura, S., Arahata, K., and Ohno, S. (1998). MKBP, a novel member of the heat shock protein family, binds and activates the myotonic dystrophy protein kinase. The Journal of Cell Biology 140, 1113-1124 https://doi.org/10.1083/jcb.140.5.1113
  17. Thompson, J., et al. (1994). CLUSTAL W: improving sensitivity of progressive multiple sequence alignments through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  18. Thompson, J., Gibson, T., Plewniak, F., Jeanmougin, F., and Higgins, D. (1997). The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882 https://doi.org/10.1093/nar/25.24.4876
  19. Trotter, E., Kao, C., Berenfeld, L., Botstein, D., Petsko, G., and Gray, J. (2002). Misfolded proteins are competent to mediate a subset of the responses to heat shock in Saccharomyces cerevisiae. The Journal of Biological Chemistry 277, 44817-44825 https://doi.org/10.1074/jbc.M204686200