DOI QR코드

DOI QR Code

An Alternative Way of Constructing Ancestral Graphs Using Marker Allele Ages from Population Linkage Disequilibrium Information

  • Published : 2009.03.31

Abstract

An alternative way of constructing ancestral graphs, which is different from the coalescent-based approach, is proposed using population linkage disequilibrium (LD) data. The main difference from the existing method is the construction of the ancestral graphs based on variants instead of individual sequences. Therefore, the key of the proposed method is to use the order of allele ages in the graphs. Distinct from the previous age-estimation methods, allele ages are estimated from full haplotype information by examining the number of generations from the initial complete LD to the current decayed state for each two variants depending on the direction of LD decay between variants. Using a simple algorithmic procedure, an ancestral graph can be derived from the expected allele ages and current LD decay status. This method is different in many ways from previous methods, and, with further improvement, it might be a good replacement for the current approaches.

Keywords

References

  1. Barrett, J.C., Fry, B., Maller, J., and Daly, M.J. (2005). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263-265 https://doi.org/10.1093/bioinformatics/bth457
  2. Crow, J.F., and Kimura, M. (1970). An Introduction to Population Genetics Theory. (New York: Harper & Row, Publishers)
  3. Ewens, W.J. (2004). Mathematical Population Genetics. New York: Springer
  4. Hartl, D.L., and Clark, A.G. (2007). Principles of Population Genetics. (Sunderland: Sinauer Associates, Inc.)
  5. Hudson, R.R. (1983). Properties of a neutral allele model with intragenic recombination. Theor. Popul. Biol. 23, 183-201 https://doi.org/10.1016/0040-5809(83)90013-8
  6. Hudson, R.R. (1990). Gene Genealogies and the Coalescent Process. Oxford Surveys in Evolutionary Biology. (New York: Oxford University Press)
  7. Hudson, R.R. (2002). Generating samples under a Wright- Fisher neutral model of genetic variation. Bioinformatics 18, 337-338 https://doi.org/10.1093/bioinformatics/18.2.337
  8. Kim, Y.U., Kim, S.H., Jin, H., Park, Y.K., Ji, M.H., and Kim, Y.J. (2008). The Korean HapMap Project Website. Genomics & Informatics 6, 91-94 https://doi.org/10.5808/GI.2008.6.2.091
  9. Kimura, M., and Ohta, T. (1971). Theoretical Aspects of Population Genetics. (Princeton: Princeton University Press)
  10. Larribe, F., Lessard, S., and Schork, N.J. (2002). Gene mapping via the ancestral recombination graph. Theor. Popul. Biol. 62, 215-229 https://doi.org/10.1006/tpbi.2002.1601
  11. Lee, J.E., Jang, H.Y., Kim, S., Yoo, Y.K., Hwang, J.J., Jun, H.J., et al. (2008). Chromosome 22 LD map comparison between Korean and other populations. Genomics & Informatics 6, 18-28 https://doi.org/10.5808/GI.2008.6.1.018
  12. Lynch, M., and Walsh, B. (1998). Genetics and Analysis of Quantitative Traits. (Sunderland: Sinauer Associates, Inc.)
  13. McVean, G.A., and Cardin, N.J. (2005). Approximating the coalescent with recombination. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 360, 1387-1393 https://doi.org/10.1098/rstb.2005.1673
  14. Minichiello, M.J., and Durbin, R. (2006). Mapping trait loci by use of inferred ancestral recombination graphs. Am. J. Hum. Genet. 79, 910-922 https://doi.org/10.1086/508901
  15. Molitor, J., Marjoram, P., and Thomas, D. (2003a). Application of Bayesian spatial statistical methods to analysis of haplotypes effects and gene mapping. Genet. Epidemiol. 25, 95-105 https://doi.org/10.1002/gepi.10251
  16. Molitor, J., Marjoram, P., and Thomas, D. (2003b). Finescale mapping of disease genes with multiple mutations via spatial clustering techniques. Am. J. Hum. Genet. 73, 1368-1384 https://doi.org/10.1086/380415
  17. Molitor, J., Zhao, K., and Marjoram, P. (2005). Fine mapping - 19th century style. BMC Genet. 6 Suppl 1, S63 https://doi.org/10.1186/1471-2156-6-S1-S63
  18. Nachman, M.W., and Crowell, S.L. (2000). Estimate of the mutation rate per nucleotide in humans. Genetics 156, 297-304
  19. Nordborg, M. (2001). Coalescent theory. In: Handbook of Statistical Genetics, D.J. Balding, M. Bishop, C. Cannings ed. (New York: Wiley), pp. 179-212
  20. Park, L. (2007). Controlling linkage disequilibrium in association tests: revisiting APOE association in Alzheimer's disease. Genomics & Informatics 5, 61-67
  21. Qin, Z.S., Niu, T., and Liu, J.S. (2002). Partition-ligation-expectation- maximization algorithm for haplotype inference with single-nucleotide polymorphisms. Am. J. Hum. Genet. 71, 1242-1247 https://doi.org/10.1086/344207
  22. Rannala, B., and Bertorelle, G. (2001). Using linked markers to infer the age of a mutation. Hum. Mutat. 18, 87-100 https://doi.org/10.1002/humu.1158
  23. Rannala, B., and Reeve, J.P. (2001). High-resolution multipoint linkage-disequilibrium mapping in the context of a human genome sequence. Am. J. Hum. Genet. 69, 159-178 https://doi.org/10.1086/321279
  24. Rannala, B., and Reeve, J.P. (2003). Joint Bayesian estimation of mutation location and age using linkage disequilibrium. Pac. Symp. Biocomput. 526-534
  25. Rannala, B., and Slatkin, M. (1998). Likelihood analysis of disequilibrium mapping, and related problems. Am. J. Hum. Genet. 62, 459-473 https://doi.org/10.1086/301709
  26. Reeve, J.P., and Rannala, B. (2002). DMLE+: bayesian linkage disequilibrium gene mapping. Bioinformatics 18, 894-895 https://doi.org/10.1093/bioinformatics/18.6.894
  27. Rosenberg, N.A., and Nordborg, M. (2002). Genealogical trees, coalescent theory and the analysis of genetic polymorphisms. Nat. Rev. Genet. 3, 380-390 https://doi.org/10.1038/nrg795
  28. Slatkin, M. (2008). A Bayesian method for jointly estimating allele age and selection intensity. Genet. Res. 90, 129-137 https://doi.org/10.1017/S0016672307008944
  29. Slatkin, M., and Rannala, B. (2000). Estimating allele age. Annu. Rev. Genomics. Hum. Genet. 1, 225-249
  30. Stephens, M., and Scheet, P. (2005). Accounting for decay of linkage disequilibrium in haplotype inference and missing- data imputation. Am. J. Hum. Genet. 76, 449-462 https://doi.org/10.1086/428594
  31. Stephens, M., Smith, N.J., and Donnelly, P. (2001). A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68, 978-989 https://doi.org/10.1086/319501
  32. Strachan, T., and Read, A.P. (2000). Human Molecular Genetics. John Wiley & Sons (Asia) Pte Ltd
  33. The International HapMap Consortium (2003). The International HapMap Project. Nature 426, 789-796 https://doi.org/10.1038/nature02168
  34. The International HapMap Consortium (2005). A haplotype map of the human genome. Nature 437, 1299-1320 https://doi.org/10.1038/nature04226
  35. Weir, B.S. (1996). Genetic Data Analysis II (2nd ed.) . Sunderland: Sinauer Associates, Inc
  36. Zollner, S., and Pritchard, J.K. (2005). Coalescent-based association mapping and fine mapping of complex trait loci. Genetics 169, 1071-1092 https://doi.org/10.1534/genetics.104.031799
  37. Zollner, S., Wen, X., and Pritchard, J.K. (2005). Association mapping and fine mapping with TreeLD. Bioinformatics 21, 3168-3170 https://doi.org/10.1093/bioinformatics/bti453