DOI QR코드

DOI QR Code

Ginseng Total Saponin Attenuate Cardiac Hypertrophy Induced by Homocysteine in Rats

  • Kim, Jong-Hoon (Department of Veterinary Physiology, College of Veterinary Medicine, Chonbuk National University, Biosafety Research Institute)
  • Published : 2009.12.31

Abstract

Recent studies have shown that Panax ginseng has a variety of beneficial effects on the cardiovascular system. Homocysteine (Hcy), which is derived from methionine, has been closely associated with the increased risk of cardiovascular diseases. In the present study, whether the in-vivo long-term co-administration of ginseng total saponins (GTS), active ingredients of Panax ginseng, with L-methionine (Met) inhibits methionine-induced hyperhomocysteine (HHcy) and H-Hcy-induced cardiovascular dysfunctions was investigated, and it was found that the plasma Hcy level, which was measured after 30 and 60 days, in the GTS+Met co-administration group was more significantly reduced than in the Metalone-treatment group. The left-ventricle (LV) wall thickness of the heart was likewise examined in each treatment group, and it was found that the co-administration of GTS with Met significantly reduced the Met-induced LV wall thickness. The results of the study indicate that the in-vivo long-term co-administration of GTS with Met not only inhibited H-Hcy induced by long-term Met-alone administration but also attenuated the H-Hcy-induced cardiovascular dysfunctions in rats.

Keywords

References

  1. Bleich S, Bandelow B, Javaheripou, K, Muller A, Degner D, Wilhelm, Finkelstein JD. Methionine metabolism in mammals: the biochemical basis for homocystinuria. Metabolism 23: 387-398 (1974) https://doi.org/10.1016/0026-0495(74)90057-2
  2. Finkelstein JD. The metabolism of homocysteine: pathways and regulation. Eur J Pediatr. 157 (Suppl. 2): S40-S44 (1998) https://doi.org/10.1007/PL00014300
  3. Lentz SR, Sobey CG, Piegors DJ, Bhopatkar MY, Faraci FM, Malinow MR, Heistad DD. Vascular dysfunction in monkeys with diet-induced hyper- homocyst(e)inemia. J Clin Invest. 98: 24-29 (1996) https://doi.org/10.1172/JCI118771
  4. Ungvari Z, Pacher P, Rischak K, Szollar L, Koller A. Dysfunction of nitric oxide mediation in isolated rat arterioles with methionine diet-induced hyper- homocysteinemia. Arterioscler Thromb Vasc Biol. 19: 1899-1904 (1999) https://doi.org/10.1161/01.ATV.19.8.1899
  5. Lang D, Kredan MB, Moat SJ, Hussain SA, Powell CA, Bellamy MF, Powers HJ, Lewis MJ. Homocysteine-induced inhibition of endothelium dependent relaxation in rabbit aorta role for superoxide anions. Arterioscler Thromb Vasc Biol. 20: 422-427 (2000) https://doi.org/10.1161/01.ATV.20.2.422
  6. Eberhardt RT, Forgione MA, Cap A, Leopold JA, Rudd MA, Trolliet M, Heydrick S, Stark R, Klings ES, Moldovan NI, Yaghoubi M, Goldschmidt-Clermont PJ, Farber HW, Cohen R, Loscalzo J. Endothelial dysfunction in a murine model of mild hyperhomocyst(e)inemia. J Clin Invest. 106: 483-491 (2000) https://doi.org/10.1172/JCI8342
  7. Tawakol A, Omland T, Gerhard M, Wu JT, Creager MA. Hyperhomocyst(e)inemia is associated with impaired endothelium- dependent vasodilation in humans. Circulation 95: 1119-1121 (1997) https://doi.org/10.1161/01.CIR.95.5.1119
  8. Bellamy MF, McDowell IF, Ramsey MW, Brownlee M, Bones C, Newcombe RG, Lewis MJ. Hyperhomocysteinemia after an oral methionine load acutely impairs endothelial function in healthy adults. Circulation 98: 1848-1852 (1998) https://doi.org/10.1161/01.CIR.98.18.1848
  9. Chambers JC, McGregor A, Jean-Marie J, Obeid OA, Kooner JS. Demonstration of rapid onset vascular endothelial dysfunction after hyperhomocysteinemia: an effect reversible with vitamin C therapy. Circulation 99: 1156-1160 (1999) https://doi.org/10.1161/01.CIR.99.9.1156
  10. Kanani PM, Sinkey CA, Browning RL, Allaman M, Knapp HR, Haynes WG. Role of oxidant stress in endothelial dysfunction produced by experimental hyper homocyst(e)inemia in humans. Circulation 100: 1161-1168 (1999) https://doi.org/10.1161/01.CIR.100.11.1161
  11. Virdis A, Ghiadoni L, Cardinal H, Favilla S, Duranti P, Birindelli R, Magagna A, Bernini G, Salvetti G, Taddei S, Salvetti A. Mechanisms responsible for endothelial dysfunction induced by fasting hyperhomocystinemia in normotensive subjects and patients with essential hypertension. J Am Coll Cardiol. 38: 1106-1115 (2001) https://doi.org/10.1016/S0735-1097(01)01492-9
  12. Harker LA, Ross R, Slichter S, Scott RC. Homocystineinduced arteriosclerosis: The role of endothelial cell injury and platelet response in its genesis. J Clin Invest. 58: 731-741(1976). https://doi.org/10.1172/JCI108520
  13. Rodgers GM, Conn MT. Homocysteine, an atherogenic stimulus, reduces protein C activation by arterial and venous endothelial cells. Blood 75: 895-901 (1990)
  14. Welch GN, Loscalzo J. Homocysteine and atherothrombosis. N Engl J Med. 338:1042-50 (1998) https://doi.org/10.1056/NEJM199804093381507
  15. Fu W, Conklin BS, Lin PH, Lumsden AB, Yao Q, Chen C. Red wine prevents homocysteine induced endothelial dysfunction in porcine coronary arteries. J Surg Res. 115: 82-91 (2003) https://doi.org/10.1016/S0022-4804(03)00247-6
  16. Joseph J, Washington A, Joseph L et al. Hyperhomocysteinemia leads to adverse cardiac remodeling in hypertensive rats. Am J Physiol Heart Circ Physiol. 283(6): H2567-H2574 (2002)
  17. Miller A, Mujumdar V, Palmer L et al. Reversal of endocardial endothelial dysfunction by folic acid in homocysteinemic hypertensive rats. Am J Hypertens. 5(2 Pt 1): 157-163 (2002)
  18. Zhou W, Chai H, Lin PH, Lumsden AB, Yao Q, Chen CJ. Molecular mechanisms and clinical applications of ginseng root for cardiovascular disease. Med Sci Monit. 10: RA187- RA192 (2004)
  19. Gillis CN. Panax ginseng pharmacology: a nitric oxide link?. Biochem Pharmacol. 54: 1-8 (1997) https://doi.org/10.1016/S0006-2952(97)00193-7
  20. Chan P, Thomas GN, Tomlinson B. Protective effects of trilinolein extracted from Panax notoginseng against cardiovascular disease. Acta Pharmacol Sin. 23: 1157-1162 (2002)
  21. Huang YS, Yang ZC, Yan BG, Hu XC, Li AN, Crowther RS. Improvement of early postburn cardiac function by use of Panax notoginseng and immediate total eschar excision in one operation. Burns 25: 35-41 (1999) https://doi.org/10.1016/S0305-4179(98)00129-6
  22. Liu JW, Wei DZ, Du CB, Zhong JJ. Enhancement of fibrinolytic activity of bovine aortic endothelial cells by ginsenoside Rb2. Acta Pharmacol Sin. 24: 102-108 (2003)
  23. Sundström J, Sullivan L, Selhub J, Benjamin EJ, D'Agostino RB, Jacques PF, Rosenberg IH, Levy D, Wilson PWF and Vasan RS. Relations of plasma homocysteine to left ventricular structure and function: the Framingham Heart Study. European Heart Journal 25: 523-530 (2004) https://doi.org/10.1016/j.ehj.2004.01.008
  24. Entz SR, Sobey CG, Piegors DJ, Bhopatkar MY, Faraci FM, Malinow RM, Heistad DD. Vascular dysfunction in monkeys with diet-induced hyperhomocyst(e)inemia. J. Clin. Invest. 98: 24-29 (1996) https://doi.org/10.1172/JCI118771
  25. Durand P, Lussier-Cacan S, Blache D. Acute methionine load-induced hyperhomocysteinemia enhances platelet aggregation, thromboxane biosynthesis, and macrophage-derived tissue factor activity in rats. FASEB J. 11: 1157-1168 (1997)
  26. Durand P, Fortin LJ, Lussier-Cacan S, Davignon J, Blache D. Hyperhomocysteinemia induced by folic acid deficiency and methionine load--applications of a modified HPLC method. Clin. Chim. Acta, 252: 83-93 (1996) https://doi.org/10.1016/0009-8981(96)06325-5
  27. Lentz SR, Sobey CG, Piegors DJ, Bhopatkar MY, Faraci FM, Malinow RM, Heistad DD. Vascular dysfunction in monkeys with diet-induced hyperhomocyst(e)inemia. J Clin Invest. 98: 24-29 (1996) https://doi.org/10.1172/JCI118771
  28. Durand P, Lussier-Cacan S, Blache D. Acute methionine load-induced hyperhomocysteinemia enhances platelet aggregation, thromboxane biosynthesis, and macrophage-derived tissue factor activity in rats. FASEB J. 11: 1157-1168 (1997)
  29. Durand P, Fortin LJ, Lussier-Cacan S, Davignon J, Blache D. Hyper- homocysteinemia induced by folic acid deficiency and methionine load: applications of a modified HPLC method. Clin Chim Acta. 252: 83-93 (1996) https://doi.org/10.1016/0009-8981(96)06325-5
  30. Ulbink JB, Vermak WJH, Bissbort S. Rapid high-performance liquid chromatographic assay for total homocysteine levels in humans serum. J Chromatogr B Biomed Appl. 565: 441-446 (1991) https://doi.org/10.1016/0378-4347(91)80407-4
  31. Miao CY, Su DF. The importance of blood pressure variability in rat aortic and left ventricular hypertrophy produced by sinoaortic denervation. J Hypertens. 20: 1865-1872 (2002) https://doi.org/10.1097/00004872-200209000-00033
  32. Litwin SE, Katz SE, Morgan JP, Douglas PS. Serial echocardiographic assessment of left ventricular geometry and function after large myocardial infarction in the rat. Circulation 89: 345-354 (1994) https://doi.org/10.1161/01.CIR.89.1.345
  33. Sohn ES, Huh BY, Park SC, Park CW, Kim HJ. The effect of ginseng on blood pressure in spontaneous hypertensive rat and essential hypertension. Proceedings of the 3rd International Ginseng Symposium. Korean Ginseng Research Institute Seoul, Korea. 1-3 (1980)
  34. Kim ND, Kang SY, Schini VB. Ginsenosides evoke endothelium- dependent vascular relaxation in rat aorta. Gen. Pharmacol. 25: 1071-1077 (1994) https://doi.org/10.1016/0306-3623(94)90121-X
  35. Chen X, Gillis CN, Moalli R. Vascular effects of ginsenosides in vitro. Br. J. Pharmacol. 82: 485-491 (1984) https://doi.org/10.1111/j.1476-5381.1984.tb10784.x
  36. Lentz SR, Sobey CG, Piegors DJ, Bhopatkar MY, Faraci FM, Malinow MR, Heistad DD. Vascular dysfunction in monkeys with dietinduced hyper- homocyst(e)inemia. J Clin Invest. 98: 24-29 (1996) https://doi.org/10.1172/JCI118771
  37. Ungvari Z, Pacher P, Rischak K, Szollar L, Koller A. Dysfunction of nitric oxide mediation in isolated rat arterioles with methionine diet-induced hyper-homocysteinemia. Arterioscler Thromb Vasc Biol. 19: 1899-1904 (1999) https://doi.org/10.1161/01.ATV.19.8.1899
  38. Morita H, Saito Y, Kurabayashi M, Nagai R. Diet-induced mild hyper- homocysteinemia and increased salt intake diminish vascular endothelial function in a synergistic manner. J Hypertens. 20: 55-62 (2002) https://doi.org/10.1097/00004872-200201000-00009
  39. De Bree A, Verschuren WM, Kromhout D, Kluijtmans LAJ, Blom HJ. Homocysteine determinants and the evidence to what extent homocysteine determines the risk of coronary heart disease. Pharmacol Rev. 54: 599-618 (2002) https://doi.org/10.1124/pr.54.4.599
  40. Patel RP, McAndrew J, Sellab H, White CR, Jo H, Freeman BA, et al. Biological aspects of reactive nitrogen species. Biochem Biophys Acta 1411: 385-400 (1999) https://doi.org/10.1016/S0005-2728(99)00028-6
  41. Radomski MW, Moncada S. Regulation of vascular homeostasis by nitric oxide. Thromb Haemost. 70: 36-41 (1993)
  42. Lamas S, Perez-Sala D, Moncada S. Nitric oxide: from discovery to the clinic. Trends Pharmacol Sci. 19: 436-438 (1998) https://doi.org/10.1016/S0165-6147(98)01265-6
  43. Channon KM, Blazing MA, Shetty GA, Potts KE, George SE. Adenoviral gene transfer of nitric oxide synthase: high level expression in human vascular cells. Cardiovasc Res. 32: 962-972 (1996)
  44. Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly. Am J Physiol. 271: C1424-1437 (1996)
  45. Majors A, Ehrhart LA, Pezacka EH. Homocysteine as a risk factor for vascular disease: enhanced collagen production and accumulation by smooth muscle cells. Arterioscler Thromb Vasc Biol. 17(10): 2074-2081 (1997) https://doi.org/10.1161/01.ATV.17.10.2074
  46. Tsai JC, Perrella MA, Yoshizumi M et al. Promotion of vascular smooth muscle cell growth by homocysteine: a link to atherosclerosis. Proc Natl Acad Sci USA 91(14): 6369-6373 (1994) https://doi.org/10.1073/pnas.91.14.6369
  47. Tyagi SC. Homocysteine redox receptor and regulation of extracellular matrix components in vascular cells. Am J Physiol. 274(2 Pt 1): C396-405 (1998)
  48. Hori M, Sato H, Fukunami M, Houki N. Pathophysiology of cytoskeleton and ECM in failing myocardium. Jpn J Clin Med. 51: 1191-1197 (1993)
  49. Kohn EC, Jacobs W, Kim YS, Alessandro R, Stetler-Stevenson WG, Liotta LA. Calcium influx modulates expression of matrix metalloproteinase-2 (72-kDa type IV collagenase, gelatinase A). J Biol Chem. 269(21): 505-21511 (1994)
  50. Mujumdar VS, Hayden MR, Tyagi SC. Homocyst(e)ine Induces Calcium Second Messenger in Vascular Smooth Muscle Cells. Journal of Cellular Physiology 183: 28-36 (2000) https://doi.org/10.1002/(SICI)1097-4652(200004)183:1<28::AID-JCP4>3.0.CO;2-O
  51. Nah SY, McCleskey EW. Ginseng root extract inhibits calcium channels in rat sensory neurons through a similar path, but di.erent receptor, as -type opioids. J Ethnopharmacol. 42: 45-51 (1994) https://doi.org/10.1016/0378-8741(94)90022-1
  52. Nah SY, Park HJ, McCleskey EW. A trace component of ginseng that inhibits $Ca_{2+}$ channels through a pertussis toxinsensitive G protein. Proc Natl Acad Sci USA 92: 8739-8743 (1995) https://doi.org/10.1073/pnas.92.19.8739
  53. Choi S, Jung SY, Kim CH, Kim HS, Rhim H, Kim SC, Nah SY. Effect of ginsenosides on voltage-dependent $Ca^{2+}$ channel subtypes in bovine chromafin cells. J Ethnopharmacol. 74: 75-81 (2001) https://doi.org/10.1016/S0378-8741(00)00353-6
  54. Rhim H, Kim H, Lee DY, Oh TH, Nah SY. Ginseng and ginsenoside $Rg_3$, a newly identified active ingredient of ginseng, modulate $Ca^{2+}$ currents in rat sensory neurons. Eur J Pharmacol. 436: 151-158 (2002) https://doi.org/10.1016/S0014-2999(01)01613-2
  55. Chambers JC, McGregor A, Jean-Marie J et al. Acute hyperhomocysteinaemia and endothelial dysfunction. Lancet 351(9095): 36-37 (1998)
  56. Lentz SR, Sobey CG, Piegors DJ et al. Vascular dysfunction in monkeys with diet-induced hyperhomocyst(e)inemia. J Clin Invest. 98(1): 24-29 (1996) https://doi.org/10.1172/JCI118771
  57. Dudman NP, Temple SE, Guo XW, Fu W, Perry MA: Homocysteine enhances neutrophilendothelial interactions in both cultured human cells and rats in vivo. Circ Res. 84 :409-416 (1999)
  58. Fu WY, Dudman NP, Perry MA, Wang XL. Leukocytes extravasation in acute homocysteinemic rats. Atherosclerosis 161: 177-183 (2002) https://doi.org/10.1016/S0021-9150(01)00643-8
  59. Van Guldener C, Nanayakkara PW, Stehouwer CD. Homocysteine and blood pressure. Curr Hypertens Rep. 5: 26-31 (2003) https://doi.org/10.1007/s11906-003-0007-z
  60. Nygard O, Vollset SE, Refsum H, Stensvold I, Tverdal A, Nordrehaug JE, Ueland M, Kvale G. Total plasma homocysteine and cardiovascular risk profile. The Hordal and Homocysteine Study. JAMA. 274: 1526-1533 (1995) https://doi.org/10.1001/jama.274.19.1526
  61. Lim U, Cassano PA. Homocysteine and blood pressure in the Third National Health and Nutrition Examination Survey, 1988-1994. Am J Epidemiol. 156: 1105-1113 (2002) https://doi.org/10.1093/aje/kwf157