Effect of Antioxidant Properties and Biogenic Amine Contents of Salted Mackerel by the Concentration of Enzymatic Hydrolysate from Ecklonia cava

감태 효소 가수분해물 처리농도에 따른 간고등어의 항산화 특성 및 Biogenic Amine 함량

  • Yoon, Min-Seok (Department of Seafood Science and Technology/Institute of Marine Industry, Gyeongsang National University) ;
  • Kim, Hyung-Jun (Department of Seafood Science and Technology/Institute of Marine Industry, Gyeongsang National University) ;
  • Park, Kwon-Hyun (Department of Seafood Science and Technology/Institute of Marine Industry, Gyeongsang National University) ;
  • Shin, Joon-Ho (Department of Seafood Science and Technology/Institute of Marine Industry, Gyeongsang National University) ;
  • Lee, Jeong-Suk (Aqua Green Technology Co.) ;
  • Jeon, You-Jin (Aqua Green Technology Co.) ;
  • Son, Hee-Jin (Seolinsusan Co.) ;
  • Heu, Min-Soo (Department of Food Science and Nutrition/Institute of Marine Industry, Gyeongsang National University) ;
  • Kim, Jin-Soo (Department of Seafood Science and Technology/Institute of Marine Industry, Gyeongsang National University)
  • 윤민석 (경상대학교 해양식품생명공학과/해양산업연구소) ;
  • 김형준 (경상대학교 해양식품생명공학과/해양산업연구소) ;
  • 박권현 (경상대학교 해양식품생명공학과/해양산업연구소) ;
  • 신준호 (경상대학교 해양식품생명공학과/해양산업연구소) ;
  • 이정석 (아쿠아그린텍) ;
  • 전유진 (아쿠아그린텍) ;
  • 손희진 (설인수산) ;
  • 허민수 (경상대학교 식품영양학과/해양산업연구소) ;
  • 김진수 (경상대학교 해양식품생명공학과/해양산업연구소)
  • Published : 2009.12.30


For preparation of high-quality salted mackerel using enzymatic extracts from Ecklonia cava (EEC) to process fresh mackerel caught off Jeju Island, the optimal concentration of EEC was investigated. There were no differences in proximate composition, salinity, Escherichia coli level, pH, volatile basic nitrogen content, histamine level, or peroxide value between salted mackerel samples prepared with different concentrations of EEC. However, the antiradical properties of salted mackerel, assayed by scavenging of DPPH free radicals, hydroxyl radicals, hydrogen peroxide, and alkyl radicals, increased with increasing concentrations of EEC. The optimal concentration of EEC for preparation of high-quality salted mackerel was 2% (w/w). Salted mackerel soaked in 2% (w/w) EEC was superior to commercial salted mackerel in antiradical properties, biogenic amine content, and other relevant chemical properties.

감태 효소 가수분해물과 제주특별자치도에서 생산된 신선한 고등어를 이용하여 건강 기능성이 부여된 고품질 간고등어를 제조할 목적으로 감태 효소 가수분해물의 적정 처리 조건에 대하여 살펴보았다. 감태 효소 가수분해물 처리유무 및 처리농도에 관계없이 간고등어의 일반성분, 염도, 대장균, pH, 휘발성염기질소, histamine 및 과산화물값은 5% 유의수준에서 차이가 인정되지 않았다. 하지만, DPPH free radical, hydroxyl radical, hydrogen peroxide, and alkyl radical와 같은 radical 소거 활성은 감태 효소 가수분해물의 처리농도가 높을수록 우수하였다. 이와 같은 결과로부터 신선한 제주특별자치도 연안산 간고등어와 감태 효소 가수 분해물을 이용하여 건강 기능성이 부여된 고품질 간고등어를 제조하고자 할 때 최적 감태 효소 가수분해물의 농도는 2%로 판단되었다. 이와 같이 신선한 고등어에 2% 감태 효소 가수분해물을 처리하여 제조한 간고등어는 시판 간고등어에 비하여 radical 소거능, biogenic amine 및 기타 화학적 특질 면에서 우수하다고 판단되었다.



  1. Kim, J.S., Yeum, D.M., Kang, H.G., Kim, I.S., Kong, C.S., Lee T.G. and Heu, T.G. (2002) Fundamentals and applications for canned foods. Hyoil Publsihing Co., Seoul, p 32-36
  2. Tsai, Y.H., Lin, C.Y., Chang, S.C., Chen, H.C., Kung,H.F., Wei, C.I. and Hwang, D.F. (2005) Occurrence of histamine and histamine-forming bacteria in salted mackerel in Taiwan. Food Microbiol., 22, 461-467 https://doi.org/10.1016/j.fm.2004.11.003
  3. Yoon, M.S., Kim, H.J., Park, K.H., Park, J.Y., Lee, J.S.,Jeon, Y.J., Son, H.J., Heu, M.S., and Kim, J.S. (2009)Food quality characterizations of commercial salted mackerel. J. Korean. Fish. Soc., 42, 123-130 https://doi.org/10.5657/kfas.2009.42.2.123
  4. Lee, S.H., Kim, K.N., Cha, S.H., Ahn, G.N. and Jeon, Y.J. (2006) Comparison of antioxidant activities of enzymatic and methanolic extracts from Ecklonia cava stem and leave. J. Korean Soc. Food Sci. Nutr., 35, 1139-1145 https://doi.org/10.3746/jkfn.2006.35.9.1139
  5. Wiseman, H. (1996) Dietary influences on membrane function important in protection against oxidative damage and disease. Nutr. Biochem., 7, 2-6 https://doi.org/10.1016/0955-2863(95)00152-2
  6. Gung, G.T., Ju, I.O., Choi, J.S. and Hong, J.S. (2000)The oxidative antimicrobial and nitrite scavenging effects of Schizandra chinensis RUPRECHT (Omija) seed. Korean J. Food Sci. Technol., 32, 928-935
  7. Cook, N.C. and Samman, S. (1996) Flavonoids chemistry, mechaism, cardioprotective effects and dietary source. Nutr. Biochem., 7, 66-76 https://doi.org/10.1016/0955-2863(95)00168-9
  8. Statistics Korea (2009) http://fs.fips.go.kr
  9. Athukorala, Y., Kim, K.N. and Jeon, Y.J. (2006)Antiproliferative and antioxidant properties of an enzymatic hydrolysate from brown alga, Ecklonia cava. Food Chem. Toxicol., 44, 1065-1074 https://doi.org/10.1016/j.fct.2006.01.011
  10. Goulas, A.E. and Kontominas, M.G. (2005) Effect of salting and smoking-method on the keeping quality of chub mackerel (Scomber japonicus): biochemical and sensory attributes. Food Chem., 93, 511-520 https://doi.org/10.1016/j.foodchem.2004.09.040
  11. Yoou, K.Y., Hong, J.Y., Kim, M.H., Cho, Y.S. and Shin, S.R. (2007) Changes on the characteristics of salted mackerel treated extracted of edible plants during storage. Korean J. Food Preserv., 14, 439-444
  12. Shin, S.R., Hong, J.Y., Nam, H.S., Huh, S.M. and Kim, K.S. (2006) Chemical changes of salted mackerel by Korean herbal extracts treatment and storage methods. Korean J. Food Preserv., 13, 18-23
  13. Hong, J.Y., Nam, H.S., Huh, S.M. and Shin, S.R. (2005) Changes on the rheology of salted mackerel by treatment of Korean herbal extracts and methods of storage. Korean J. Food Preserv., 12, 578-582
  14. Ahn, C.B., Kim, B.G., Lee, C.H., Lee, H.Y. and Lee, E.H. (1991) The effect of cellophane film packing on quality of semi-salted and dried mackerel during processing and storage. J. Korean Soc. Food Nutr., 20, 139-147
  15. Kim, G.W., Kim, H.K., Kim, J.S., An, H.Y., Hu, G.W.,Son, J.K., Kim, O.S. and Cho, S.Y. (2008) Characterizing the quality of salted mackerel prepared with deep seawater. J. Kor. Fish. Soc., 41, 163-169
  16. Hwang, S.J. and Kim, Y.M. (2005) Isolation and identification of a histamine- degrading bacteria from salted mackerel. J. Life Sci., 15, 743-748 https://doi.org/10.5352/JLS.2005.15.5.743
  17. Kim, Y.S., Lee, I.S., Lee, J.H. and Sung, N.J. (1997)Effect of ascorbic acid or BHA on the formation of cholesterol oxidation products during storage of salted mackerel, Scomber japonicus. J. Korean Soc. Food Sci. Nutr., 26, 261-269
  18. AOAC. (1995) Official Methods of Analysis. 16th ed. Association of Official Analytical Chemists, Washington DC. p 69-74
  19. Ministry of Social Welfare of Japan. (1960) Guide to Experiment of Sanitary Infection. Ⅲ. Volatile basic nitrogen. Kenpakusha, Tokyo, Japan, p 30-32
  20. APHA. (1970) Recommended procedures for the bacteriological examination of seawater and shellfish. 3rd ed. APHA Inc. New York, USA, p 17-24
  21. Nanjo, F., Goto, K., Seto, R., Susuki, M., Sakai, M. and Hara, Y. (1996) Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylhlhydrazyl radical. Free Radical. Biol. Med., 21, 895-902 https://doi.org/10.1016/0891-5849(96)00237-7
  22. Rosen, G.M. and Rauckman, E.J. (1984) Spin trapping of superoxide and hydroxyl radicals. In. L Packer (Ed.). Methods in enzymology (Vol. 105, p 189-209). Orlando: Academic Press
  23. Hiramoto, K., Johkoh, H., Sako, K.I. and Kikugawa, K. (1993) DNA breaking activity of the carbon-centered radical generated from 2,2-azobis(2 aminopropane) hydrochloride (AAPH). Free Radical. Res. Commun., 19, 323-332 https://doi.org/10.3109/10715769309056521
  24. Muller, H.E. (1995) Detection of hydrogen peroxide produced by microorganism on ABTS-peroxidase medium Zentralbl Bakteriol. Mikrobiol. Hyg., 259, 151-158
  25. The Pharmaceutical Society of Japan. (2005) Methods of Analysis in Health Science. Kanehara & Co., Ltd.,Tokyo, Japan, p 180-182
  26. KFDA (Korea Food and Drug Administration). (2008) 2008 Food code. vol Ⅰ. KFDA, Seoul, p 3-1-2
  27. Korean Standards Association. (2006) Korean Industrial Standards KSH 6029. Korean Standards Association, Seoul, Korea
  28. Halasz, A., Barath, A., Simson-Sarkadi, L. and Holzapfel, W. (1994) Biogenic amines and their production by microorganisms in food. Trands Food Sci., 5, 42-48 https://doi.org/10.1016/0924-2244(94)90070-1
  29. Cho, T.Y., Han, G.H., Bahn, K.N., Son, Y.W., Jang, M.R., Lee, C.H., Kim, S.H., Kim, D.B. and Kim, S.B. (2006) Evaluation of biogenic amines in Korean commercial fermented foods. Korean J. Food Sci. Technol., 38, 730-737
  30. Tylor, S.L. (1986) Histamine food poisoning: toxicology and clinical aspects. Crit. Rev. Toxicol., 17, 91-128 https://doi.org/10.3109/10408448609023767
  31. Yeo, H.K. (2005) Histamine and other biogenic amine contents of dark-fleshed fishes and manufactured goods. MS Phesis. Pukyong National University, Busan, Korea
  32. Yongsawatdigul, J., Rodtong, S. and Raksakulthai, N. (2007) Acceleration of thai fish sauce fermentation using proteinase and bacterial starter cultures. J. Food Sci., 72, M382-390 https://doi.org/10.1111/j.1750-3841.2007.00532.x
  33. Veciana-Nogues, M.T., Marine-Font, A. and Vidal-Carou, M.C. (1997) Changes in biogenic amine during the storage of mediterranean anchovies immersed in oil. J. Agric. Food Chem., 45, 1385-1389 https://doi.org/10.1021/jf9605714
  34. Kim, S.H., An, H., Price, R.J. (1999) Histamine formation and bacterial spoilage of albacore harvested off the US Northwest coast. J. Food Sci., 64: 340-343 https://doi.org/10.1111/j.1365-2621.1999.tb15896.x
  35. Bartholomew, B.A., Berry, P.R., Rodhouse, J.C. and Gilbert, R.J. (1987) Scombrotoxic fish poisoning in Britan: features of over 250 suspected incidents from 1976-1986. Epidem. Inf., 99, 775-782 https://doi.org/10.1017/S0950268800066632
  36. Rossi, S., Lee, C., Ellis, P.C. and Pivarnik, L.F. (2002)Biogenic amines formation in bigeye tuna steaks and whole skipjack tuna. J. Food Sci., 67, 2056-2060 https://doi.org/10.1111/j.1365-2621.2002.tb09500.x