보조공동을 이용한 초음속 공동내부의 압력진동 저감에 관한 연구

A Study on the Reduction of Supersonic Cavity Pressure Oscillations Using a Sub-Cavity System

  • 발행 : 2009.10.30

초록

2차원 초음속 공동유동에서 발생하는 압력진동을 제어하기 위한 목적으로, 본 연구에서는 수치해석적 연구를 수행하였다. 본 계산에서는 압력진동을 제어하기 위하여 보조공동의 형상을 변화시켰으며, 유동의 마하수를 1.50, 1.83 그리고 2.50로 변화시켰다. 그 결과, 보조공동은 압력진동을 상당히 감소시켰으며, 압력진동의 제어효과는 유동의 마하수와 보조공동의 상세형상에 크게 의존함을 알았다.

Numerical computations were carried out to analyze the effect of a sub-cavity at several inlet Mach numbers on the control of cavity-induced pressure oscillations in two-dimensional supersonic flow. The present passive control method, the sub-cavity applied to the front wall of a square cavity, was studied for the inlet Mach numbers of 1.50, 1.83 and 2.50. The results show that the sub-cavity is effective in reducing the oscillations, and a resultant amount of the reduction depended on the inlet Mach number, the length of flat plate, and the depth of sub-cavity used as an oscillation suppressor.

키워드

참고문헌

  1. Krishnamurty, K., 'Acoustic Radiation from two Dimensional Rectangular Cutouts in Aerodynamic Surfaces,' NACA TN-3487, August 1955
  2. Roshko, A., 'Some Measurements of Flow in a Rectangular Cutout,' NACA TN-3488, 1955
  3. Rossiter, J. E., 'Wind-Tunnel Experiments on the Flow over Rectangular Cavities at Subsonic and Transonic Speeds,' Aeronautical Research Council RM-3438, 1964
  4. Heller, H. H., Bliss, D. B., 'The Physical Mechanism of Flow-Induced Pressure Fluctuations in Cavities and Concepts for their Suppression,' AIAA Paper 75-491, 1975
  5. Shaw, L., Clark, R., Talmadge, D., 'F-111 Generic Weapons Bay Acoustic Environment,' Journal of Aircraft, Vol.25, No.2, 1988, pp.147-153 https://doi.org/10.2514/3.45555
  6. Sarno, R., Franke, M., "Suppression of Flow-induced Pressure Oscillations in' Cavities,' Journal of Aircraft, Vol.31, No.1, 1994, pp.90-96 https://doi.org/10.2514/3.46459
  7. Alam, M. M., Matsuo, S., Teramoto, K., Setoguchi, T. and Kim, H. D., 'A New Method of Controlling Cavity-Induced Pressure Oscillations Using Sub-Cavity,' Proceedings, 5th Asian-Pacific Conference on Aerospace Technology and Science, Guilin, China, CD-ROM, 2006 https://doi.org/10.1007/BF03177426
  8. Goldberg, U. C., 'Toward a Pointwise Turbulence Model for Wall-bounded and Free Shear Flows,' Trans ASME, Journal of Fluids Engineering, Vol.116, 1994, pp.72-76 https://doi.org/10.1115/1.2910245
  9. Goldberg, U. C., 'Exploring a Three-equation R-k-$\varepsilon$ Turbulence Model,' Trans ASME, Journal of Fluids Engineering, Vol.118, 1996, pp.795-799 https://doi.org/10.1115/1.2835511
  10. Heiler, M., 'Instationare Phanomene in Homogen/Heterogen Kondensierenden Dusenund Turbinenstromungen,' Dissertation, Fakultat fur Maschinenbau, Universitat Karlsruhe, Germany, 1999
  11. Yee, H. C., 'A Class of High-resolution Explicit and Implicit Shock Capturing Methods,' NASA TM-89464, 1989
  12. Tam, C. K. W., Block, P. J. W., 'On the Tones and Pressure Oscillations Induced by Flow over Rectangular Cavities,' Journal of Fluid Mechanics, Vol.89, 1978 https://doi.org/10.1017/S0022112078002657
  13. Zhang, X., Edwards, J. A., 'An Investigation of Supersonic Oscillatory Cavity Flows driven by Thick Shear,' Aeronautical Journal, 1990, pp.355-364
  14. Takakura, Y., Suzuki, T., Higashino, F., Yoshida, M., 'Numerical Study on Supersonic Internal Cavity Flows : What causes the Pressure Fluctuations?,' 37th AIAA Aerospace Science Meeting & Exhibit, AIAA Paper, 99-0545, 1999
  15. Nishioka, M., Asai, T., Sakaue, S., Shirai, K., 'Some Thoughts on the Mechanism of Supersonic Cavity Flow Oscillation, Part 2 A New Formula for the Oscillation Frequency,' Journal of Japan Society of Fluid Mechanics, Vol.21, 2002, pp.368-378