DOI QR코드

DOI QR Code

플렉시블 디스플레이 적용을 위한 ITO:Ce/PET 박막의 물성평가

Characteristics of ITO:Ce/PET Films for Flexible Display Applications

  • 김세일 (부산대학교 재료공학부) ;
  • 강용민 (부산대학교 재료공학부) ;
  • 권세희 (부산대학교 재료공학부) ;
  • 정태동 (부산대학교 국가핵심연구센터) ;
  • 이승호 (한국세라믹기술원 그린세라믹본부) ;
  • 송풍근 (부산대학교 재료공학부)
  • Kim, Se-Il (Department of Materials Science and Engineering, Pusan National University) ;
  • Kang, Yong-Min (Department of Materials Science and Engineering, Pusan National University) ;
  • Kwon, Se-Hee (Department of Materials Science and Engineering, Pusan National University) ;
  • Jung, Tae-Dong (National Core Research Center for Hybrid Materials Solution, Pusan National University) ;
  • Lee, Seung-Ho (Green Ceramic Division, Korea Institute of Ceramic Engineering and Technology (KICET)) ;
  • Song, Pung-Keun (Department of Materials Science and Engineering, Pusan National University)
  • 발행 : 2009.12.31

초록

ITO and ITO:Ce films were deposited by DC magnetron sputtering using an ITO ($SnO_2$: 10 wt%) and $CeO_2$ doped ITO ($CeO_2$: 0.5, 3.0, 4.0 and 6.0 wt%) ceramic targets, respectively, on unheated polyethylene terephthalate (PET) substrates. The lowest resistivity $6.7{\times}10^{-4}{\Omega}cm$ was obtained from ITO:Ce film deposited using $CeO_2$ (3.0 wt%) doped ITO target. On hte other hand, ITO:Ce (0.5wt%) film has the excellent mechanical durability which was evaluated by bending test. This result was attributed to the higher binding energy of $CeO_2$ compared to $SnO_2$ and $In_2O_3$. Therefore, $CeO_2$ atoms have a small displacement caused by the bombardment of high energy particles, and it attribute to the increase in adhesion caused by decrease in internal stress. The average transmittance of the films was more than 80% in the visible region.

키워드

참고문헌

  1. K. E. Lee, M. Wang, E. J. Kim, S. H. Hahn, Current Appl. Phys., 9 (2009) 683 https://doi.org/10.1016/j.cap.2008.06.006
  2. K. Sato, A. Mitsui, H. Nishimura, M. Miyazaki, Journal of Non-Crystalline Solids, 218 (1997) 323 https://doi.org/10.1016/S0022-3093(97)00241-X
  3. J. I. Han, W. K. Kim, M. G. Kwak, S. K. Park, Thin Solids Films, 397 (2001) 49 https://doi.org/10.1016/S0040-6090(01)01489-4
  4. D. K. Chambers, B. Raut, D. Qi, C. B. O'neal, S. Z. Selmic, Thin Solids Films, 517 (2009) 5743 https://doi.org/10.1016/j.tsf.2009.03.199
  5. C. M. Hsu, C. F. Liu, H. E. Cheng, W. T. Wu, Journal of Electronic Materials, 35 (2006) 3
  6. S. I. Kim, S. H. Cho, S. R. Choi, M. C. Oh, J. H. Park, P. K. Song, Thin Solids Films, 517 (2009) 4061 https://doi.org/10.1016/j.tsf.2009.01.182
  7. J. R. Lee, D. Y. Lee, D. G. Kim, G. H. Lee, Y. D. Kim, P. K. Song, Met. Mater. Int., 14 (2008) 745 https://doi.org/10.3365/met.mat.2008.12.745
  8. Y. M. Kang, D. Y. Lee, J. R. Lee, G. H. Lee, Y. R. Cho, P. K. Song, Current Appl. Phys., 9 (2009) S266 https://doi.org/10.1016/j.cap.2009.01.032
  9. K. Masek, M. Vaclavu, P. Babor, V. Marolin, Appl. Surf. Sci., 255 (2009) 6656 https://doi.org/10.1016/j.apsusc.2009.02.080
  10. P. K. Song, H. Akao, M. Kamei, Y. Shigesato, I. Yasui, Jpn. J. Appl. Phys., 38 (1999) 5224 https://doi.org/10.1143/JJAP.38.5224
  11. M. Fujita, H. Morikawa, Thin Solids Films, 359 (2000) 61 https://doi.org/10.1016/S0040-6090(99)00749-X
  12. C. Guillen, J. Herrero, Vacuum, 80 (2006) 615 https://doi.org/10.1016/j.vacuum.2005.10.006